如圖,在四棱錐PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直線PA與底面ABCD所成角為60°,點(diǎn)M、N分別是PA、PB的中點(diǎn).求證:
(1)MN∥平面PCD;
(2)四邊形MNCD是直角梯形;
(3)DN⊥平面PCB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,側(cè)面PAD⊥底面ABCD,若點(diǎn)E,F(xiàn)分別是PC,BD的中點(diǎn)。
(1)求證:EF∥平面PAD;
(2)求證:平面PAD⊥平面PCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分別為PB,AB,BC,PD,PC的中點(diǎn)
(1)求證:CE∥平面PAD;
(2)求證:平面EFG⊥平面EMN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,四棱錐PABCD的底面為正方形,側(cè)棱PA⊥底面ABCD,且PA=AD=2,E,F,H分別是線段PA,PD,AB的中點(diǎn).
(1)求證:PB∥平面EFH;
(2)求證:PD⊥平面AHF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①,E、F分別是直角三角形ABC邊AB和AC的中點(diǎn),∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線段A1C中點(diǎn).求證:
(1)直線FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中點(diǎn).如圖②,將△ABE沿AE折起,使二面角BAEC成直二面角,連結(jié)BC、BD,F(xiàn)是CD的中點(diǎn),P是棱BC的中點(diǎn).求證:
圖①圖②
(1)AE⊥BD;
(2)平面PEF⊥平面AECD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在正方體ABCDA1B1C1D1中,E、F、G、H分別是BC、CC1、C1D1、A1A的中點(diǎn).求證:
(1)BF∥HD1;
(2)EG∥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
正三棱柱ABCA1B1C1中,已知AB=A1A,D為C1C的中點(diǎn),O為A1B與AB1的交點(diǎn).
(1)求證:AB1⊥平面A1BD;
(2)若點(diǎn)E為AO的中點(diǎn),求證:EC∥平面A1BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,中,平面外一條線段AB滿足AB∥DE,AB,AB⊥AC,F(xiàn)是CD的中點(diǎn).
(1)求證:AF∥平面BCE
(2)若AC=AD,證明:AF⊥平面
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com