【題目】已知函數(shù).
(1)當時,求證:;
(2)若不等式在上恒成立,求實數(shù)的取值范圍.
【答案】(1)證明見解析;(2)
【解析】
(1)構(gòu)造新函數(shù),利用導數(shù)研究新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的最值即可證得結(jié)論;
(2)對函數(shù)求導,分情況求的取值范圍.
(1)當時,.
所以.
設(shè),則,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以,
所以.
(2)因為,
所以,在上,
①當,,若,則,若,則,
所以在上單調(diào)遞增,在上單調(diào)遞減,
所以由題意得,解得,
所以.
②當時,,若,則,若,則,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以,
所以由題意得,解得,所以.
③當時,
(i)當時,,若,則,若,則,若,則,
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,
所以由題意得所以所以;
(ii)當時,在上恒成立,所以在上單調(diào)遞增,
所以,所以滿足題意;
(iii)當時,,
易得函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減,
所以由題意得所以所以.
綜上,實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】斜率為的直線過拋物線的焦點,且與拋物線交于、兩點.
(1)設(shè)點在第一象限,過作拋物線的準線的垂線,為垂足,且,直線與直線關(guān)于直線對稱,求直線的方程;
(2)過且與垂直的直線與圓交于、兩點,若與面積之和為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在橢圓: 上, 是橢圓的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點重合的兩點, 關(guān)于原點O對稱,直線, 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】極坐標系中橢圓C的方程為,以極點為原點,極軸為軸非負半軸,建立平面直角坐標系,且兩坐標系取相同的單位長度.
(Ⅰ)求該橢圓的直角標方程,若橢圓上任一點坐標為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦,交于點,且直線與的傾斜角互補,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高三理科班共有60名同學參加某次考試,從中隨機挑選出5名同學,他們的數(shù)學成績x與物理成績y如下表:
數(shù)據(jù)表明y與x之間有較強的線性關(guān)系.
(1)求y關(guān)于x的線性回歸方程;
(2)該班一名同學的數(shù)學成績?yōu)?/span>110分,利用(1)中的回歸方程,估計該同學的物理成績;
(3)本次考試中,規(guī)定數(shù)學成績達到125分為優(yōu)秀,物理成績達到100分為優(yōu)秀.若該班數(shù)學優(yōu)秀率與物理優(yōu)秀率分別為50%和60%,且除去抽走的5名同學外,剩下的同學中數(shù)學優(yōu)秀但物理不優(yōu)秀的同學共有5人.能否在犯錯誤概率不超過0.01的前提下認為數(shù)學優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):回歸直線的系數(shù).
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計 | |
認為共享產(chǎn)品對生活有益 | |||
認為共享產(chǎn)品對生活無益 | |||
總計 |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?
(2)現(xiàn)按照分層抽樣從認為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.
參與公式:
臨界值表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知點,,動點滿足直線與的斜率之積為.記的軌跡為曲線.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求和的直角坐標方程;
(2)求上的點到距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com