【題目】下列函數(shù)中為偶函數(shù)又在(0,+∞)上是增函數(shù)的是( )
A.y=( )|x|
B.y=x2
C.y=|lnx|
D.y=2﹣x
【答案】B
【解析】解:對于A,y=( )|x| , 有f(﹣x)=f(x),f(x)為偶函數(shù),x>0時,f(x)=y=( )x為減函數(shù);對于B,y=x2 , 有f(﹣x)=f(x),f(x)為偶函數(shù),x>0時,f(x)為增函數(shù);
對于C,y=|lnx|,x>0,不關(guān)于原點(diǎn)對稱,x>0時,y=|lnx|為增函數(shù);
對于A,y=2﹣x , 不為偶函數(shù),x>0時,y=2﹣x為減函數(shù).
故選:B.
【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的最值;
(2)當(dāng)時,對任意都有恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,設(shè)函數(shù),數(shù)列滿足, ,求證: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:存在定點(diǎn),使得函數(shù)圖象上任意一點(diǎn)關(guān)于點(diǎn)對稱的點(diǎn)也在函數(shù)的圖象上,并求出點(diǎn)的坐標(biāo);
(2)定義,其中且,求;
(3)對于(2)中的,求證:對于任意都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆世界低碳經(jīng)濟(jì)大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為 ,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補(bǔ)貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x| <0,x∈R},B={x|x2﹣2x﹣m<0,x∈R}
(1)當(dāng)m=3時,求A∩(RB);
(2)若A∩B={x|﹣1<x<4},求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共12分)
已知函數(shù), (為自然對數(shù)的底數(shù)).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時,不等式恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(x2+ax﹣a﹣1),給出下列命題:
①函數(shù)f(x)有最小值;
②當(dāng)a=0時,函數(shù)f(x)的值域?yàn)镽;
③若函數(shù)f(x)在區(qū)間(﹣∞,2]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是a≤﹣4.
其中正確的命題是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)镽,f(﹣1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com