【題目】如圖,在四棱錐中,底面為直角梯形,∥,,,平面平面,,.
(1)求證:;
(2)求二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)根據(jù)平面與平面垂直的性質(zhì),結(jié)合線面垂直性質(zhì)即可判定;
(2)取中點(diǎn)O,連接,,可證明,進(jìn)而建立空間直角坐標(biāo)系,寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可由空間向量法求得二面角的余弦值.
(1)證明:在四棱錐中,
因?yàn)槠矫?/span>平面,平面平面,
又因?yàn)?/span>,平面,
所以平面,
因?yàn)?/span>平面,
所以.
(2)取中點(diǎn)O,連接,,
因?yàn)?/span>,所以.
因?yàn)槠矫?/span>平面,平面平面,
因?yàn)?/span>平面,所以平面,所以,.
因?yàn)?/span>,,,所以,,
所以四邊形是平行四邊形,所以.
如圖建立空間直角坐標(biāo)系,
則,,,,,.
,.
設(shè)平面的法向量為,則
即令,則,,所以.
因?yàn)槠矫?/span>的法向量,
所以
由圖可知二面角為銳二面角,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手機(jī)運(yùn)動(dòng)計(jì)步已成為一種時(shí)尚,某中學(xué)統(tǒng)計(jì)了該校教職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:
(Ⅰ)求直方圖中的值,并由頻率分布直方圖估計(jì)該校教職工一天步行數(shù)的中位數(shù);
(Ⅱ)若該校有教職工175人,試估計(jì)一天行走步數(shù)不大于130百步的人數(shù);
(Ⅲ)在(Ⅱ)的條件下該校從行走步數(shù)大于150百步的3組教職工中用分層抽樣的方法選取6人參加遠(yuǎn)足活動(dòng),再?gòu)?/span>6人中選取2人擔(dān)任領(lǐng)隊(duì),求這兩人均來(lái)自區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“未來(lái)肯定是非接觸的,無(wú)感支付的方式將成為主流,這有助于降低交互門(mén)檻”.云從科技聯(lián)合創(chuàng)始人姚志強(qiáng)告訴南方日?qǐng)?bào)記者.相對(duì)于主流支付方式二維碼支付,刷臉支付更加便利,以前出門(mén)一部手機(jī)解決所有,而現(xiàn)在連手機(jī)都不需要了,畢竟,手機(jī)支付還需要攜帶手機(jī),打開(kāi)二維碼也需要時(shí)間和手機(jī)信號(hào).刷臉支付將會(huì)替代手機(jī),成為新的支付方式.某地從大型超市門(mén)口隨機(jī)抽取50名顧客進(jìn)行了調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 總計(jì) | |
刷臉支付 | 18 | 25 | |
非刷臉支付 | 13 | ||
總計(jì) | 50 |
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為使用刷臉支付與性別有關(guān)?
(2)從參加調(diào)查且使用刷臉支付的顧客中隨機(jī)抽取2人參加抽獎(jiǎng)活動(dòng),抽獎(jiǎng)活動(dòng)規(guī)則如下:
“一等獎(jiǎng)”中獎(jiǎng)概率為0.25,獎(jiǎng)品為10元購(gòu)物券張(,且),“二等獎(jiǎng)”中獎(jiǎng)概率0.25,獎(jiǎng)品為10元購(gòu)物券兩張,“三等獎(jiǎng)”中獎(jiǎng)概率0.5,獎(jiǎng)品為10元購(gòu)物券一張,每位顧客是否中獎(jiǎng)相互獨(dú)立,記參與抽獎(jiǎng)的兩位顧客中獎(jiǎng)購(gòu)物券金額總和為元,若要使的均值不低于50元,求的最小值.
附:,其中.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.869 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】1852年,英國(guó)來(lái)華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱(chēng)之為“中國(guó)剩余定理”.“中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,例如求1到2000這2000個(gè)整數(shù)中,能被3除余1且被7除余1的數(shù)的個(gè)數(shù),現(xiàn)由程序框圖,其中MOD函數(shù)是一個(gè)求余函數(shù),記表示m除以n的余數(shù),例如,則輸出i為( ).
A.98B.97C.96D.95
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點(diǎn),且,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值為,其圖象相鄰兩條對(duì)稱(chēng)軸之間的距離為,且的圖象關(guān)于點(diǎn)對(duì)稱(chēng),則下列判斷正確的是( )
A.要得到函數(shù)的圖象,只需將向右平移個(gè)單位
B.函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)
C.當(dāng)時(shí),函數(shù)的最小值為
D.函數(shù)在上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是橢圓的右焦點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),當(dāng)直線過(guò)的下頂點(diǎn)時(shí),的斜率為,當(dāng)直線垂直于的長(zhǎng)軸時(shí),的面積為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時(shí),求直線的方程;
(Ⅲ)若直線上存在點(diǎn)滿足成等比數(shù)列,且點(diǎn)在橢圓外,證明:點(diǎn)在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到定直線的距離與到定點(diǎn)的距離之比為.
(1)求點(diǎn)的軌跡的方程;
(2)已知點(diǎn),在軸上是否存在一點(diǎn),使得曲線上另有一點(diǎn),滿足,且?若存在,求出所有符合條件的點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫(xiě)出曲線的極坐標(biāo)方程,并求出曲線與公共弦所在直線的極坐標(biāo)方程;
(2)若射線與曲線交于兩點(diǎn),與曲線交于點(diǎn),且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com