己知f(x)=Inx﹣ax2﹣bx.
(Ⅰ)若a=﹣1,函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)當(dāng)a=1,b=﹣1時,證明函數(shù)f(x)只有一個零點;
(Ⅲ)f(x)的圖象與x軸交于A(x1,0),B(x2,0),兩點,AB中點為C(x0,0),求證:f'(x0)<0.
解:(Ⅰ)依題意:f(x)=lnx+x2﹣bx f(x)在(0,+∞)上遞增,
 ≥0對x∈(0,+∞)恒成立
 對x∈(0,+∞)恒成立,
只需    
∵x>0,  當(dāng)且僅當(dāng) 時取=
  ∴b的取值范圍為       
(Ⅱ)當(dāng)a=1,b=﹣1時,f(x)=lnx﹣x2+x,其定義域是(0,+∞)
 = 
∴0<x<1時,f′(x)>0當(dāng)x>1時,f′(x)<0
∴函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減
∴當(dāng)x=1時,函數(shù)f(x)取得最大值,其值為f(1)=ln1﹣1+1=0
當(dāng)x≠1時,f(x)<f(1)=0
∴函數(shù)f(x)只有一個零點       
(Ⅲ)由已知得   兩式相減,
  
由 及2x0=x1+x2,得  = =  = = 
 ∈(0,1)且 (0<t<1)
 
在(0,1)上遞減,
=0
x1<x2,f′(x0)<0
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知f(x)=Inx-ax2-bx.
(Ⅰ)若a=-1,函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)當(dāng)a=1,b=-1時,證明函數(shù)f(x)只有一個零點;
(Ⅲ)f(x)的圖象與x軸交于A(x1,0),B(x2,0),兩點,AB中點為C(x0,0),求證:f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)量檢測數(shù)學(xué)試卷 (理科)(解析版) 題型:解答題

己知f(x)=Inx-ax2-bx.
(Ⅰ)若a=-1,函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)當(dāng)a=1,b=-1時,證明函數(shù)f(x)只有一個零點;
(Ⅲ)f(x)的圖象與x軸交于A(x1,0),B(x2,0),兩點,AB中點為C(x,0),求證:f′(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省衡陽八中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

己知f(x)=Inx-ax2-bx.
(Ⅰ)若a=-1,函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)當(dāng)a=1,b=-1時,證明函數(shù)f(x)只有一個零點;
(Ⅲ)f(x)的圖象與x軸交于A(x1,0),B(x2,0),兩點,AB中點為C(x,0),求證:f′(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省邵陽市洞口一中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

己知f(x)=Inx-ax2-bx.
(Ⅰ)若a=-1,函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)當(dāng)a=1,b=-1時,證明函數(shù)f(x)只有一個零點;
(Ⅲ)f(x)的圖象與x軸交于A(x1,0),B(x2,0),兩點,AB中點為C(x,0),求證:f′(x)<0.

查看答案和解析>>

同步練習(xí)冊答案