【題目】已知中心在坐標原點O,焦點在軸上,離心率為的橢圓C過點

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)不過坐標原點O的直線與橢圓C交于P,Q兩點,若,證明:點O到直線的距離為定值.

【答案】(Ⅰ);(時,點O到直線的距離為定值.

【解析】試題分析:利用待定系數(shù)法,根據(jù)題意列出方程組,解出即可;(Ⅱ)當直線的斜率都存在時,設(shè)直線的方程為與橢圓的方程聯(lián)立可得點坐標,從而可算得設(shè)點到直線的距離為,在中可計算出的值,當直線之一的斜率不存在時,另一個的斜率一定為0時,可得結(jié)果.

試題解析:(Ⅰ)由題意可設(shè)橢圓方程為

解得所以橢圓方程為.

(Ⅱ)當直線的斜率都存在時,設(shè)直線的方程為,則

,解得

設(shè)點到直線的距離為,在中,

,所以點O到直線的距離為

當直線之一的斜率不存在時,另一個的斜率一定為0,此時P,Q分別為橢圓的長軸和短軸的端點,點O到直線的距離為

綜上可知,當時,點O到直線的距離為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A、B、C的對邊,且2asinA=(2b﹣c)sinB+(2c﹣b)sinC.
(Ⅰ)求角A的大。
(Ⅱ)若sinB+sinC= ,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中,為常數(shù)且)在處取得極值.

(Ⅰ)當時,求的單調(diào)區(qū)間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)曲線在點處的切線方程為.

(1)求;

(2)若存在實數(shù),對任意的,都有,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率 ,分別是橢圓的左、右頂點,點P是橢圓上的一點,直線PA、PB的傾斜角分別為α、β滿足tanα+tanβ=1,則直線PA的斜率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:函數(shù) 在區(qū)間(m,m+1)上單調(diào)遞減,命題q:實數(shù)m滿足方程 表示的焦點在y軸上的橢圓.
(1)當p為真命題時,求m的取值范圍;
(2)若命題“p且q”為假命題,“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+(1﹣a)x+(1﹣a).a(chǎn)∈R.
(1)當a=4時,解不等式f(x)≥7;
(2)若對P任意的x∈(﹣1,+∞),函數(shù)f(x)的圖象恒在x軸上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , ,若f(x)≤g(x)在區(qū)間[0,1]上恒成立,則(
A.實數(shù)t有最小值1
B.實數(shù)t有最大值1
C.實數(shù)t有最小值
D.實數(shù)t有最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(

A.16
B.17
C.14
D.15

查看答案和解析>>

同步練習冊答案