下列命題錯(cuò)誤的是( )
A.對于命題p:?x∈R,使得x2+x+1<0,則-p為:?x∈R,均有x2+x+1≥0
B.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
C.若p∧q為假命題,則p,q均為假命題
D.“x>2”是“x2-3x+2>0”的充分不必要條件
【答案】分析:根據(jù)命題:?x∈R,使得x2+x+1<0是特稱命題,其否定為全稱命題,即:?x∈R,均有x2+x+1≥0,從而得到答案.故A對;
根據(jù)逆否命題的寫法進(jìn)行判斷B即可;
P∧q為假命題⇒P、q不均為真命題.故C錯(cuò)誤;
利用充分不必要條件的判定方法即可進(jìn)行D的判定.
解答:解:∵命題:?x∈R,使得x2+x+1<0是特稱命題
∴否定命題為:?x∈R,均有x2+x+1≥0,從而得到答案.故A對
B命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”故②正確;
C:若P∧q為假命題,則P、q不均為真命題.故③錯(cuò)誤;
D“x>2”⇒“x2-3x+2>0”,反之不成立,“x>2”是“x2-3x+2>0”的充分不必要條件,
故選C.
點(diǎn)評:這類問題的常見錯(cuò)誤是沒有把全稱量詞改為存在量詞,或者對于“>”的否定用“<”了.這里就有注意量詞的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特稱命題的否定是全稱命題,“存在”對應(yīng)“任意”.本題考查命題的真假判斷與應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.