若直線(xiàn)x+ay-a=0與直線(xiàn)ax-(2a-3)y-1=0互相垂直,則a的值是( 。
A、2B、-3或1C、2或0D、1或0
分析:分別表示出兩直線(xiàn)的斜率,然后因?yàn)閮芍本(xiàn)垂直得到斜率乘積為-1,由a≠0得到關(guān)于a的方程求出解,當(dāng)a=0代入討論符合題意.
解答:解:由直線(xiàn)x+ay-a=0與直線(xiàn)ax-(2a-3)y-1=0互相垂直,得到k1•k2=-1,
當(dāng)a≠0時(shí)-
1
a
a
2a-3
=-1,解得a=2;
當(dāng)a=0時(shí),直線(xiàn)方程分別為x=0和3y-1=0滿(mǎn)足互相垂直.
所以a=0或a=2
故選C
點(diǎn)評(píng):此題學(xué)生掌握兩直線(xiàn)垂直時(shí)斜率的乘積為-1,做題時(shí)應(yīng)考慮斜率不存在時(shí)的情況,學(xué)生容易忽視這個(gè)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(xiàn)x+ay-a=0與直線(xiàn)ax-(2a-3)y-1=0互相垂直,則a的值是
a=0或a=2
a=0或a=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列正確命題的序號(hào)為
(2)(4)
(2)(4)

(1)若直線(xiàn)l1⊥l2,則他們的斜率之積為-1   
(2)已知等比數(shù)列{an}的前n項(xiàng)和Sn=t•5n-2-
1
5
,則實(shí)數(shù)t的值為5    
(3)若直線(xiàn)x+ay-a=0與直線(xiàn)ax-(2a-3)y-1=0垂直,則a的值為2       
(4)在△ABC中,角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,若a2+b2=2c2,則cosC的最小值為
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列正確命題的序號(hào)為_(kāi)_____
(1)若直線(xiàn)l1⊥l2,則他們的斜率之積為-1   
(2)已知等比數(shù)列{an}的前n項(xiàng)和Sn=t•5n-2-
1
5
,則實(shí)數(shù)t的值為5    
(3)若直線(xiàn)x+ay-a=0與直線(xiàn)ax-(2a-3)y-1=0垂直,則a的值為2       
(4)在△ABC中,角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,若a2+b2=2c2,則cosC的最小值為
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)專(zhuān)項(xiàng)復(fù)習(xí):平面與平面的位置關(guān)系(樂(lè)陵一中)(解析版) 題型:選擇題

若直線(xiàn)x+ay-a=0與直線(xiàn)ax-(2a-3)y-1=0互相垂直,則a的值是( )
A.2
B.-3或1
C.2或0
D.1或0

查看答案和解析>>

同步練習(xí)冊(cè)答案