如圖,在四棱錐中,,底面是菱形,且,的中點(diǎn).
(1)求四棱錐的體積;
(2)證明:平面;
(3)側(cè)棱上是否存在點(diǎn),使得平面?并證明你的結(jié)論.
為側(cè)棱的中點(diǎn)時(shí),平面
解:(1),

則有,
, 又
底面,………………………(2分)
 ……………(4分) 
(2)證明: 是菱形,,
為正三角形, 又的中點(diǎn),…………………(6分)
      
,,,
平面          ……………………………………………………(8分)
(3)為側(cè)棱的中點(diǎn)時(shí),平面.    ……………………………(10分)
證法一:設(shè)的中點(diǎn),連,則的中位線,
,又, 
四邊形為平行四邊形,
,平面,平面,
平面.                                ………………(12分)
證法二:設(shè)的中點(diǎn),連,則的中位線,
,平面,平面,
平面.                                
同理,由,得平面
,平面平面,  
平面,平面.  ……………………………(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在空間,到定點(diǎn)的距離為定長(zhǎng)的點(diǎn)的集合稱為球面.定點(diǎn)叫做球心,定長(zhǎng)叫做球面的半徑.平面內(nèi),以點(diǎn)為圓心,以為半徑的圓的方程為,類似的在空間以點(diǎn)為球心,以為半徑的球面方程為                                            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三棱錐的底面是邊長(zhǎng)為2正三角形,側(cè)面均為等腰直角三角形,則此三棱錐的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在正方體上任意選擇4個(gè)頂點(diǎn),由這4個(gè)頂點(diǎn)可能構(gòu)成如下幾何體:
①有三個(gè)面為全等的等腰直角三角形,有一個(gè)面為等邊三角形的四面體;
②每個(gè)面都是等邊三角形的四面體;
③每個(gè)面都是直角三角形的四面體;
④有三個(gè)面為不全等的直角三角形,有一個(gè)面為等邊三角形的四面體。
以上結(jié)論其中正確的是              (寫出所有正確結(jié)論的編號(hào))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方體ABCD–A1B1C1D1中,M,N分別為棱AA1和B1B的中點(diǎn),若θ為直線CM與所成的角,則="    "                                                                                               (   )                                                
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

頂點(diǎn)在同一球面上的正四棱錐中,,則兩點(diǎn)間的球面距離為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

13.設(shè)是邊長(zhǎng)為的正內(nèi)的一點(diǎn),點(diǎn)到三邊的距離分別為,則;類比到空間,設(shè)是棱長(zhǎng)為的空間正四面體內(nèi)的一點(diǎn),則點(diǎn)到四個(gè)面的距離之和=          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖4,在三棱錐P—ABC中,PA⊥平面ABC、△ABC為正三角形,且PA=AB=2,則三棱錐P—ABC的側(cè)視圖面積為       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三棱錐A—BCD中,,BC =" CD" = 1,AB⊥面BCD,,點(diǎn)E、F分別在AC、AD上,使面BEFACD,且EFCD,則平面BEF與平面BCD所成的二面角的正弦值為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案