【題目】下列關(guān)于函數(shù)的判斷正確的是( 。
①的解集是;
②極小值,是極大值;
③沒有最小值,也沒有最大值.
A. ①③ B. ①②③ C. ② D. ①②
【答案】D
【解析】分析:由f(x)>0可解得x的范圍,從而確定①正確;
對函數(shù)f(x)進(jìn)行求導(dǎo),然后令f'(x)=0求出x,在根據(jù)f'(x)的正負(fù)判斷原函數(shù)的單調(diào)性進(jìn)而可確定②正確.
根據(jù)函數(shù)的單調(diào)性可判斷極大值即是原函數(shù)的最大值,無最小值,③不正確.從而得到答案.
詳解:由f(x)>0(2x﹣x2)ex>02x﹣x2>00<x<2,故①正確;
f′(x)=ex(2﹣x2),由f′(x)=0得x=±,
由f′(x)<0得x>或x<﹣,
由f′(x)>0得﹣<x<,
∴f(x)的單調(diào)減區(qū)間為(﹣∞,﹣),(,+∞).單調(diào)增區(qū)間為(﹣,).
∴f(x)的極大值為f(),極小值為f(﹣),故②正確.
∵x<﹣時,f(x)<0恒成立.
∴f(x)無最小值,但有最大值f()
∴③不正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA按米處理).
(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點(diǎn)O在攝影愛好者與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動的任意時刻,攝影愛好者觀察彩桿MN的視角(設(shè)為)是否存在最大值?若存在,請求出取最大值時的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).
(1)如果直線過拋物線的焦點(diǎn),求的值;
(2)如果 ,證明:直線必過一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)求函數(shù)在點(diǎn)(1,0)處的切線方程;
(II)設(shè)實(shí)數(shù)k使得f(x)< kx恒成立,求k的范圍;
(III)設(shè)函數(shù),求函數(shù)h(x)在區(qū)間上的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點(diǎn)D,D1分別為AC,A1C1上的點(diǎn).
(1)當(dāng)的值等于何值時,BC1∥平面AB1D1;
(2)若平面BC1D∥平面AB1D1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)產(chǎn)品件的總成本(萬元).已知產(chǎn)品單價(萬元)與產(chǎn)品件數(shù)滿足,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元.
(1)設(shè)產(chǎn)量為件時,總利潤為(萬元),求的解析式;
(2)產(chǎn)量定為多少時總利潤(萬元)最大?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,直線被橢圓截得的線段長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點(diǎn)作互相垂直的兩條直線分別交橢圓于兩點(diǎn)(點(diǎn)不同于橢圓的右頂點(diǎn)),證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差為2,前n項和為Sn , 且S1 , S2 , S4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(﹣1)n﹣1 ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com