將圖1中面積為13×13=169的正方形裁剪成圖中標(biāo)出的四塊幾何圖形,然后重新拼接成圖2,通過計(jì)算發(fā)現(xiàn)“長(zhǎng)方形”的面積為8×21=168,顯然有問題.請(qǐng)認(rèn)真觀察,尋找出的根源是______.(注:只要表達(dá)出類似意思就可以得分.)
若以BC所在直線為x軸,BA所在直線為y軸建立平面直角坐標(biāo)系,則kAC=-
8
21

而A(0,8),F(xiàn)(8,5),∴kAF=
8-5
0-8
=-
3
8
≠-
8
21

說明A,F(xiàn),C,G不共線,圖形由重疊的情況.
∴原正方形與拼成的矩形的面積不等.
故答案為A、F、G、C并不在一條直線上.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)要求證明下列各題:
(1)用分析法證明:
(2)用反證法證明:1,,3不可能是一個(gè)等差數(shù)列中的三項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

楊輝三角如圖所示,楊輝三角中的第5行除去兩端數(shù)字1以外,均能被5整除,則具有類似性質(zhì)的行是( 。
A.第6行B.第7行C.第8行D.第9行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

我們知道等比數(shù)列與等差數(shù)列在許多地方都有類似的性質(zhì),請(qǐng)由等差數(shù)列{an}的前n項(xiàng)和公式Sn=na1+
n(n-1)
2
d
(d為公差),類比地得到等比數(shù)列{bn}的前n項(xiàng)積公式Tn=______(q為公比)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

由平面幾何知識(shí),我們知道在Rt△ABC中,若兩條直線邊的長(zhǎng)分別為a,b,則△ABC的外接圓半徑R=
a2+b2
2
,如果我們將這一結(jié)論拓展到空間中去,類比可得:在三棱錐中,若三條側(cè)棱兩兩垂直,且它們的長(zhǎng)分別為a,b,c,則條棱錐的外接球半徑R=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出數(shù)表:
2456
9131822
27303545
48505254
請(qǐng)?jiān)谄渲姓页?個(gè)不同的數(shù),使它們從小到大能構(gòu)成等比數(shù)列,這4個(gè)數(shù)依次可以是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義一種運(yùn)算“&”:“規(guī)定1&1=2,同時(shí)規(guī)定:若m&n=k,則m&(n+1)=k+2”,試計(jì)算:1&2005=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用反證法證明命題“+是無理數(shù)”時(shí),假設(shè)正確的是( 。
A.假設(shè)是有理數(shù)B.假設(shè)是有理數(shù)
C.假設(shè)是有理數(shù)D.假設(shè)+是有理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的(    )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案