【題目】已知的展開式中,前三項系數的絕對值依次成等差數列.
(1)求展開式中的常數項;
(2)求展開式中所有整式項.
【答案】(1);(2) x4,-4x3,7x2,-7x,.
【解析】試題分析:(1)求出二項展開式的通項公式,再根據前三項的系數的絕對值依次成等差數列,求出的值,再令通項公式中的冪指數為,求出的值,代入即可求解展開式的常數項;
(2)要使為整式項,需的冪至少為非負數,結合,求出的值,即可得到展開式中的整式項.
試題解析:
(1) Tr+1=C·()n-r·()r·(-1)r,
∴前三項系數的絕對值分別為C, C, C,
由題意知C=C+C,∴n=1+n(n-1),n∈N*,解得n=8或n=1(舍去),
∴Tk+1=C·()8-k·(-)k=C·(-)k·x4-k,0≤k≤8,
令4-k=0得k=4,∴展開式中的常數項為T5=C(-)4=.
(2)要使Tk+1為整式項,需4-k為非負數,且0≤k≤8,∴k=0,1,2,3,4.
∴展開式中的整式項為:x4,-4x3,7x2,-7x,.
科目:高中數學 來源: 題型:
【題目】正方體ABCD-A1B1C1D1中,E為AB中點,F為CD1中點.
(1)求證:EF∥平面ADD1A1;
(2)求直線EF和平面CDD1C1所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的最大值與最小值之和為a2+a+1(a>1).
(1)求a的值;
(2)判斷函數g(x)=f(x)-3在[1,2]的零點的個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若 的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得如圖柱狀圖:
以這100臺機器更換的易損零件數的頻率代替1臺機器更換的易損零件數發(fā)生的概率,記X表示2臺機器三年內共需更換的易損零件數,n表示購買2臺機器的同時購買的易損零件數.
(1)求X的分布列;
(2)若要求P(X≤n)≥0.5,確定n的最小值;
(3)以購買易損零件所需費用的期望值為決策依據,在n=19與n=20之中選其一,應選用哪個?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直線坐標系xOy中,曲線C1的參數方程為 (t為參數,a>0).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(1)說明C1是哪一種曲線,并將C1的方程化為極坐標方程;
(2)直線C3的極坐標方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某市開展群眾體育活動的情況,擬采用分層抽樣的方法從A、B、C三個區(qū)抽取5個工廠進行調查.已知這三個區(qū)分別有9,18,18個工廠.
(1)求從A、B、C三個區(qū)中分別抽取的工廠的個數;
(2)若從抽得的5個工廠中隨機地抽取2個進行調查結果的比較,計算這2個工廠中至少有一個來自C區(qū)的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)=ax2+x.
(Ⅰ)當a>0時,求證:對任意的x1,x2∈R都有[f(x1)+f(x2)]成立;
(Ⅱ)當x∈[0,2]時,|f(x)|≤1恒成立,求實數a的取值范圍;
(Ⅲ)若a=,點p(m,n2)(m∈Z,n∈Z)是函數y=f(x)圖象上的點,求m,n.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com