【題目】已知拋物線與過點的直線交于兩點.
(1)若,求直線的方程;
(2)若,軸,垂足為,探究:以為直徑的圓是否過定點?若是,求出該定點的坐標;若不是,請說明理由.
【答案】(1)或;(2)過定點,
【解析】
(1)設(shè)出直線的方程,聯(lián)立直線與拋物線方程,利用根與系數(shù)的關(guān)系及弦長公式計算即可;
(2)設(shè)以為直徑的圓經(jīng)過點,,,利用得,令解方程組即可.
(1)由題可知,直線的斜率不為0,設(shè)其方程為,
將代入,消去可得,
顯然,設(shè),,則,,
所以,
因為,所以,解得,
所以直線的方程為或.
(2)因為,所以是線段的中點,
設(shè),則由(1)可得,,
所以,又軸,垂足為,所以,
設(shè)以為直徑的圓經(jīng)過點,則,,
所以,即,
化簡可得①,
令,可得,
所以當,時,對任意的,①式恒成立,
所以以為直徑的圓過定點,該定點的坐標為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,、為橢圓的左、右焦點,為橢圓上一點,且.
(1)求橢圓的標準方程;
(2)設(shè)直線,過點的直線交橢圓于、兩點,線段的垂直平分線分別交直線、直線于、兩點,當最小時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各人;男性人,女性人.繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯誤的是( )
A.是否傾向選擇生育二胎與戶籍有關(guān)
B.是否傾向選擇生育二胎與性別無關(guān)
C.傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同
D.傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,四邊形是矩形,平面平面,,,,為的中點,為線段上的一點.
(1)求證:;
(2)若二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,右頂點為,右焦點為,為坐標原點,,橢圓過點.
(1)求橢圓的方程;
(2)若過點的直線與橢圓交于不同的兩點(在之間),求與面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4 — 4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為().
(1)分別寫出直線的普通方程與曲線的直角坐標方程;
(2)已知點,直線與曲線相交于兩點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進行了調(diào)查統(tǒng)計,繪制得到下面的散點圖.
(1)由散點圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計該校學(xué)生升入中學(xué)的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為.直線被稱作為橢圓的一條準線.點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.
(1)求證:.
(2)若點在軸的上方,,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com