精英家教網 > 高中數學 > 題目詳情

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求

(Ⅱ)若△的面積是, 求.

【答案】(I);(II).

【解析】試題分析:(I)根據余弦定理,求得 ,則是等邊三角形.,故

(II)由題意可得,又由 ,可得,再結合余弦定理可得,最后由正弦定理可得 ,即可得到的值

試題解析:

() , 因為,

由余弦定理得,

所以,

整理得,

解得.

所以.

所以是等邊三角形.

所以

() 法1: 由于的外角, 所以.

因為的面積是, 所以.

所以.

,

,

所以.

, 由正弦定理得,

所以.

法2: 作, 垂足為,

因為邊長為等邊三角形,

所以.

因為的面積是, 所以.

所以. 所以.

在Rt△中, ,

所以, .

所以

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)判斷并證明函數的奇偶性;

(2)判斷當時函數的單調性,并用定義證明;

(3)若定義域為,解不等式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)loga(1x),g(x)loga(1x)(a>0,a1).

(1)a2,函數f(x)的定義域為[3,63],f(x)的最值;

(2)求使f(x)g(x)>0x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著機構改革工作的深入進行,各單位要減員增效,有一家公司現有職員2a人(140<2a<420,且a為偶數),每人每年可創(chuàng)利b萬元.據評估,在經營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.01b萬元,但公司需付下崗職員每人每年0.4b萬元的生活費,并且該公司正常運轉所需人數不得小于現有職員的,為獲得最大的經濟效益,該公司應裁員多少人?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若函數的圖象與x軸無交點,求a的取值范圍;

(2) 若函數[-1,1]上存在零點,求a的取值范圍;

(3)設函數,當時,若對任意的,總存在,使得,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運

會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50歲

80

年齡大于50歲

10

合計

70

100

(1)根據已有數據,把表格數據填寫完整;

(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?

(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位教師的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD∠CDA90°,,M是線段AE上的動點.

1)試確定點M的位置,使AC∥平面MDF,并說明理由;

2)在(1)的條件下,求平面MDF將幾何體ADEBCF分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , , , 上一點, 平面

(Ⅰ)證明: 平面;

(Ⅱ)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面為矩形,D

的中點,AC⊥平面BCC1B1

(Ⅰ)證明:AB//平面CDB1;

(Ⅱ)若AC=BC=1,BB1=,

(1)求BD的長;

(2)求三棱錐C-DB1C1的體積.

查看答案和解析>>

同步練習冊答案