【題目】某校針對校食堂飯菜質量開展問卷調查,提供滿意與不滿意兩種回答,調查結果如下表(單位:人):
學生 | 高一 | 高二 | 高三 |
滿意 | 500 | 600 | 900 |
不滿意 | 300 | 200 | 300 |
(1)求從所有參與調查的人中任選1人是高三學生的概率;
(2)從參與調查的高三學生中,用分層抽樣的方法抽取4人,在這4人中任意選取2人,求這兩人對校食堂飯菜質量都滿意的概率.
【答案】(1)(2)
【解析】
(1)求出總人數(shù)及高三學生總數(shù)后可得;
(2)按分層抽樣,4人中3人對食堂滿足,1人不滿意,可對4個編號,然后用列舉法寫出任取2人的所有可能,并得出2人都是滿意的可能,計數(shù)后可得概率.
(1)由題意得該校學生總人數(shù)為人,
則從所有參與調查的人中任選1人是高三學生的概率.
(2)依題意可得,從調查結果為滿意的高三學生中應抽取人,設為,,;
從調查結果為不滿意的高三學生中應抽取人,設為B.
從這4人中任意選取2人的所有基本事件有,,,,,,共6種.
設A表示事件“兩人都滿意”,則事件A包含的基本事件有,,共3種.
故所求概率.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點和,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(1)當點在圓上運動時,求點的軌跡方程;
(2)已知,是曲線上的兩點,若曲線上存在點,滿足(為坐標原點),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,四個點,,,中有3個點在橢圓:上.
(1)求橢圓的標準方程;
(2)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且,直線與軸、軸分別交于、兩點,設直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正四棱錐中,O為頂點S在底面ABCD內的投影,P為側棱SD的中點,且.
(1)證明:平面PAC.
(2)求直線BC與平面PAC的所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,下面的表格內的數(shù)值填寫規(guī)則如下:先將第1行的所有空格填上1;再把一個首項為1,公比為的數(shù)列依次填入第一列的空格內;其它空格按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫
第1列 | 第2列 | 第3列 | … | 第列 | |
第1行 | 1 | 1 | 1 | … | 1 |
第2行 | |||||
第3行 | |||||
… | … | ||||
第行 |
(1)設第2行的數(shù)依次為,試用表示的值;
(2)設第3列的數(shù)依次為,求證:對于任意非零實數(shù),;
(3)能否找到的值,使得(2)中的數(shù)列的前項成為等比數(shù)列?若能找到,的值有多少個?若不能找到,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】足球運動的真諦不僅在于競技,更在于增強人民體質,培養(yǎng)人們愛國主義、集體主義、頑強拼搏的精神.足球是人類交流的另類“語言”,而其他競技方式,無論從深度到廣度,從速度到力度,都難以與足球比肩,就交流與表達而言,足球是人類最能展露自己天性的運動.
(1)已知某國每年注冊足球運動員的人數(shù)(萬人)與該國年度國際足聯(lián)排名線性相關,統(tǒng)計數(shù)據(jù)如下表:
求變量與的線性回歸方程,并預測該國年度國際足聯(lián)排名為第時注冊足球運動員的人數(shù);(參考公式:)
(參考數(shù)據(jù):;)
(2)從該國中學生中選出名男生進行顛球挑戰(zhàn),若能一次性連續(xù)顛球超過個就可獲得一個獎勵足球,每人只能挑戰(zhàn)一次.已知這名男生每人能夠一次性連續(xù)顛球超過個的概率均為,且相互獨立.求這名男生獲得獎勵足球個數(shù)的數(shù)學期望及獲得獎勵足球超過個的概率(精確到).(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是函數(shù)(,,,)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將()的圖像上所有的點( )
A. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
B. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍,縱坐標不變
C. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
D. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍,縱坐標不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個江水養(yǎng)殖場,有兩個方案:方案l:在岸邊上取兩點,用長度為的圍網(wǎng)依托岸邊線圍成三角形(,兩邊為圍網(wǎng));方案2:在岸邊,上分別取點,用長度為的圍網(wǎng)依托岸邊圍成三角形.請分別計算,面積的最大值,并比較哪個方案好.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com