【題目】已知數(shù)列{an},{bn}滿足 , ,其中n∈N+ . (I)求證:數(shù)列{bn}是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(II)設 ,求數(shù)列{cncn+2}的前n項和為Tn .
【答案】(Ⅰ)證明:∵ = = ,
∴數(shù)列{bn}是公差為2的等差數(shù)列,
又 ,∴bn=2+(n﹣1)×2=2n,
∴ ,解得 . …
(Ⅱ)解:由(Ⅰ)可得 ,
∴ ,
∴數(shù)列{cncn+2}的前n項和為
= .
【解析】(I)作差利用遞推關系、等差數(shù)列的通項公式即可得出.(II)利用“裂項求和”方法即可得出.
【考點精析】掌握數(shù)列的前n項和和數(shù)列的通項公式是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),當x1 , x2∈(0,+∞)時,都有(x1﹣x2)[f(x1)﹣f(x2)]<0.設 ,則( )
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓C與x軸相切于點T(2,0),與y軸的正半軸相交于A,B兩點(A在B的上方),且AB=3.
(1)求圓C的方程;
(2)直線BT上是否存在點P滿足PA2+PB2+PT2=12,若存在,求出點P的坐標,若不存在,請說明理由;
(3)如果圓C上存在E,F(xiàn)兩點,使得射線AB平分∠EAF,求證:直線EF的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點M的直角坐標為(1,0),若直線l的極坐標方程為 ρcos(θ+ )﹣1=0,曲線C的參數(shù)方程是 (t為參數(shù)).
(1)求直線l和曲線C的普通方程;
(2)設直線l與曲線C交于A,B兩點,求 + .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下面四個推理:
①由“若是實數(shù),則”推廣到復數(shù)中,則有“若是復數(shù),則”;
②由“在半徑為R的圓內(nèi)接矩形中,正方形的面積最大”類比推出“在半徑為R的球內(nèi)接長方體中,正方體的體積最大”;
③以半徑R為自變量,由“圓面積函數(shù)的導函數(shù)是圓的周長函數(shù)”類比推出“球體積函數(shù)的導函數(shù)是球的表面積函數(shù)”;
④由“直角坐標系中兩點、的中點坐標為”類比推出“極坐標系中兩點、的中點坐標為”.
其中,推理得到的結論是正確的個數(shù)有( )個
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來大氣污染防治工作得到各級部門的重視,某企業(yè)在現(xiàn)有設備下每日生產(chǎn)總成本(單位:萬元)與日產(chǎn)量(單位:噸)之間的函數(shù)關系式為,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進了除塵設備,每噸產(chǎn)品除塵費用為萬元,除塵后當日產(chǎn)量時,總成本.
(1)求的值;
(2)若每噸產(chǎn)品出廠價為48萬元,試求除塵后日產(chǎn)量為多少時,每噸產(chǎn)品的利潤最大,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】鄉(xiāng)大學生攜手回鄉(xiāng)創(chuàng)業(yè),他們引進某種果樹在家鄉(xiāng)進行種植試驗.他們分別在五種不同的試驗田中種植了這種果樹100株并記錄了五種不同的試驗田中果樹的死亡數(shù),得到如下數(shù)據(jù):
試驗田 | 試驗田1 | 試驗田2 | 試驗田3 | 試驗田4 | 試驗田5 |
死亡數(shù) | 23 | 32 | 24 | 29 | 17 |
(Ⅰ)求這五種不同的試驗田中果樹的平均死亡數(shù);
(Ⅱ)從五種不同的試驗田中隨機取兩種試驗田的果樹死亡數(shù),記為x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)視為同一事件,并求的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
在平面直角坐標系中,曲線的參數(shù)方程是(為參數(shù),),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程是,等邊的頂點都在上,且點,,依逆時針次序排列,點的極坐標為.
(1)求點,,的直角坐標;
(2)設為上任意一點,求點到直線距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,
已知圓和圓.
(1)若直線過點,且被圓截得的弦長為,
求直線的方程;(2)設P為平面上的點,滿足:
存在過點P的無窮多對互相垂直的直線和,
它們分別與圓和圓相交,且直線被圓
截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點P的坐標。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com