(2012•懷柔區(qū)二模)當(dāng)x∈(1,2)時,不等式(x-1)2<logax恒成立,則實數(shù)a的取值范圍是
(1,2]
(1,2]
分析:根據(jù)二次函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),由已知中當(dāng)x∈(1,2)時,不等式(x-1)2<logax恒成立,則y=logax必為增函數(shù),且當(dāng)x=2時的函數(shù)值不小于1,由此構(gòu)造關(guān)于a的不等式,解不等式即可得到答案.
解答:解:∵函數(shù)y=(x-1)2在區(qū)間(1,2)上單調(diào)遞增,
∴當(dāng)x∈(1,2)時,y=(x-1)2∈(0,1),
若不等式(x-1)2<logax恒成立,
則a>1且1≤loga2
即a∈(1,2],
故答案為:(1,2].
點評:本題考查的知識點是對數(shù)函數(shù)的單調(diào)性與特殊點,其中根據(jù)二次函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),結(jié)合已知條件構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)y=(sinx+cosx)2-1是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)如圖,在四棱錐S-ABCD中,底面ABCD是正方形,四個側(cè)面都是等邊三角形,AC與BD的交點為O,E為側(cè)棱SC上一點.
(1)當(dāng)E為側(cè)棱SC的中點時,求證:SA∥平面BDE;
(2)求證:平面BED⊥平面SAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)函數(shù)y=(sinx+cosx)2-1是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•懷柔區(qū)二模)手表的表面在一平面上,整點1,2,…,12這12個數(shù)字等間隔地分布在半徑為
2
2
的圓周上,從整點i到整點(i+1)的向量記作
titi+1
,則
t1t2
t2t3
+
t2t3
t3t4
+…+
t12t1
t1t2
=
6
3
-9
6
3
-9

查看答案和解析>>

同步練習(xí)冊答案