【題目】已知定義在R上的函數(shù)f(x)滿足f(﹣x)=f(x),且當(dāng)x<0,f(x)=3x+1,若a= ,b= ,c=2 ,則有( )
A.f(a)<f(b)<f(c)
B.f(b)<f(c)<f(a)
C.f(b)<f(a)<f(c)
D.f(c)<f(a)<f(b)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已經(jīng)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
平面直角坐標(biāo)系xOy中,曲線C:.直線l經(jīng)過點P(m,0),且傾斜角為.O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,且|PA|·|PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且.若對任意的,,都有.
(1)判斷函數(shù)的單調(diào)性,并說明理由;
(2)若,求實數(shù)的取值范圍;.
(3)若不等式對任意和都恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當(dāng)x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 | |||
女性市民 | |||
合計 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機抽取人,求至多有位老師的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M:: (a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B.經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(1)求橢圓方程;
(2)當(dāng)直線l的傾斜角為45°時,求線段CD的長;
(3)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com