【題目】已知對任意平面向量 =(x,y),把 繞其起點沿逆時針方向旋轉(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點B繞點A逆時針方向旋轉(zhuǎn)θ得到點P.
(1)已知平面內(nèi)點A(2,3),點B(2+2 ,1).把點B繞點A逆時針方向旋轉(zhuǎn) 角得到點P,求點P的坐標.
(2)設平面內(nèi)曲線C上的每一點繞坐標原點沿順時針方向旋轉(zhuǎn) 后得到的點的軌跡方程是曲線y= ,求原來曲線C的方程.
【答案】
(1)解:∵A(2,3), ,∴ ,
設點P的坐標為P(x,y),則
繞點A逆時針方向旋轉(zhuǎn) 角得到: =(4,0)
∴(x﹣2,y﹣3)=(4,0)即 ,
∴ ,
即P(6,3)
(2)解:設旋轉(zhuǎn)前曲線C上的點為(x,y),旋轉(zhuǎn)后得到的曲線 上的點為(x',y'),則 解得:
代入 得x'y'=1即y2﹣x2=2
【解析】(1)求出 ,設點P的坐標為P(x,y),求出 , 繞點A逆時針方向旋轉(zhuǎn) 角得到: ,列出方程求解即可.(2)設旋轉(zhuǎn)前曲線C上的點為(x,y),旋轉(zhuǎn)后得到的曲線 上的點為(x',y'),通過 整合求解即可.
【考點精析】利用圓的一般方程對題目進行判斷即可得到答案,需要熟知圓的一般方程的特點:(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項;(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了;(3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x+ ﹣1(x≠0),k∈R.
(1)當k=3時,試判斷f(x)在(﹣∞,0)上的單調(diào)性,并用定義證明;
(2)若對任意x∈R,不等式f(2x)>0恒成立,求實數(shù)k的取值范圍;
(3)當k∈R時,試討論f(x)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某投資公司計劃投資A,B兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預測,A產(chǎn)品的利潤y1與投資金額x的函數(shù)關系為y1=18﹣ ,B產(chǎn)品的利潤y2與投資金額x的函數(shù)關系為y2= (注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx.
(1)當x∈[0, ]時,求f(x)的值域;
(2)用五點法在圖中作出y=f(x)在閉區(qū)間[﹣ , ]上的簡圖;
(3)說明f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變化得到?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,下列說法正確的是( )
A.函數(shù)f(x)的圖象關于直線x=﹣ 對稱
B.函數(shù)f(x)的圖象關于點(﹣ ,0)對稱
C.若方程f(x)=m在[﹣ ,0]上有兩個不相等的實數(shù)根,則實數(shù)m∈(﹣2,﹣ ]
D.將函數(shù)f(x)的圖象向左平移 個單位可得到一個偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(1,2), =(﹣3,4).
(1)求 + 與 ﹣ 的夾角;
(2)若 滿足 ⊥( + ),( + )∥ ,求 的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 1=a1≤a2≤…≤a7 , 其中a1 , a3 , a5 , a7 成公比為q的等比數(shù)列,a2 , a4 , a6成公差為1的等差數(shù)列,則q的最小值是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知R(x0 , y0)是橢圓 + =1上的一點,從原點O向圓R(x﹣x0)2+(y﹣y0)2=12作兩條切線,分別交橢圓于P,Q兩點.
(1)若R點在第一象限,且直線OP,OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,分別記為k1 , k2 , 求k1k2的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(﹣ ,0),B( ,0),銳角α的終邊與單位圓O交于點P.
(Ⅰ)用α的三角函數(shù)表示點P的坐標;
(Ⅱ)當 =﹣ 時,求α的值;
(Ⅲ)在x軸上是否存在定點M,使得| |= | |恒成立?若存在,求出點M的橫坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com