用數(shù)學(xué)歸納法證明:對(duì)任意的nN*,1-+-+…+-=++…+.
證明略
證明 (1)當(dāng)n=1時(shí),左邊=1-===右邊,
∴等式成立.
(2)假設(shè)當(dāng)n=k(k≥1,k∈N*)時(shí),等式成立,即
1-+-+…+-=++…+.
則當(dāng)n=k+1時(shí),
1-+-+…+-+-
=++…++-
=++…+++(-)
=++…+++,
即當(dāng)n=k+1時(shí),等式也成立,
所以由(1)(2)知對(duì)任意的n∈N*等式成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)f(n)=1+,當(dāng)n≥2,nN*時(shí),用數(shù)學(xué)歸納法證明:n+f(1)+f(2)+…+f(n-1)=nf(n)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列的前項(xiàng)和,先計(jì)算數(shù)列的前4項(xiàng),后猜想并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

是否存在常數(shù)a、b、c使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)對(duì)于一切n∈N*都成立,若存在,求出a、b、c并證明;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{ a n}的各項(xiàng)都是正數(shù),且滿足:a0=1,an+1=an·(4-an)(n∈N).
證明:an<an+1<2(n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

證明:能被整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(不等式選講)
用數(shù)學(xué)歸納法證明不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明,在驗(yàn)證成立時(shí),左邊計(jì)算所得的項(xiàng)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4—5;不等式選講
已知f(x)=x|x-a|-2
(1)當(dāng)a=1時(shí),解不等式f(x)<|x-2|
(2)當(dāng)x∈(0,1]時(shí),f(x)<x2-1恒成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案