【題目】下列選項(xiàng)中,p是q的必要不充分條件的是( )
A.;方程的曲線是橢圓
B.;對不等式恒成立
C.設(shè)是首項(xiàng)為正數(shù)的等比數(shù)列,公比小于0;對任意的正整數(shù)n,
D.已知空間向量,,;向量a與b的夾角是
【答案】ABC
【解析】
分別求出每個(gè)選項(xiàng)的條件,逐一判斷是否滿足,p是q的必要不充分條件.
A選項(xiàng):,方程的曲線是橢圓,則
即或,所以p是q的必要不充分條件,正確;
B選項(xiàng):;對不等式恒成立,即不等式恒成立,則,所以p是q的必要不充分條件,正確;
C選項(xiàng):是首項(xiàng)為正數(shù)的等比數(shù)列,公比小于0;對任意的正整數(shù)n,
,所以當(dāng)時(shí),滿足,但是,即充分不滿足.反之若,則,因?yàn)?/span>,
所以,即,必要性成立,所以p是q的必要不充分條件,正確;
D選項(xiàng):;向量a與b的夾角是,a與b的夾角的余弦值,當(dāng)時(shí),,即,充分性滿足;當(dāng)向量a與b的夾角是時(shí),,即,,必要性不滿足,所以p是q的充分不必要條件,不正確.
故選:ABC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓:經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),射線與橢圓交于點(diǎn),過點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),直線與橢圓交于,兩個(gè)相異點(diǎn),證明:面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面底面ABC, ,且,O為AC中點(diǎn).
(1)求直線與平面所成角的正弦值;
(2)在上是否存在一點(diǎn)E,使得平面,若不存在,說明理由;若存在,確定點(diǎn)E的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)有居民人,為了迎接第十一個(gè)“全民健身日”的到來,居委會(huì)從中隨機(jī)抽取了名居民,統(tǒng)計(jì)了他們本月參加戶外運(yùn)動(dòng)時(shí)間(單位:小時(shí))的數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,分為組:,,,,,得到如圖所示的頻率分布直方圖.
(Ⅰ)試估計(jì)該社區(qū)所有居民中,本月戶外運(yùn)動(dòng)時(shí)間不小于小時(shí)的人數(shù);
(Ⅱ)已知這名居民中恰有名女性的戶外運(yùn)動(dòng)時(shí)間在,現(xiàn)從戶外運(yùn)動(dòng)時(shí)間在的樣本對應(yīng)的居民中隨機(jī)抽取人,求至少抽到名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)函數(shù)圖象上不重合的兩點(diǎn).證明:.(是直線的斜率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為AB的中點(diǎn),P為以A為圓心、AB為半徑的圓弧上的任意一點(diǎn),設(shè)向量=λ+μ,則λ+μ的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線:上.
(1)求的方程;
(2)過上的任一點(diǎn)(與的頂點(diǎn)不重合)作軸于,試求線段中點(diǎn)的軌跡方程;
(3)在上任取不同于點(diǎn)的點(diǎn),直線與直線交于點(diǎn),過點(diǎn)作軸的垂線交拋物線于點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式的解集為.
(1)求a,b的值.
(2)當(dāng)時(shí),解關(guān)于x的不等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com