設(shè)有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個(gè)命題:
①存在一條定直線與所有的圓均相切;
②存在一條定直線與所有的圓均相交;
③存在一條定直線與所有的圓均不相交;
④所有的圓均不經(jīng)過原點(diǎn).
其中真命題的代號是    (寫出所有真命題的代號).
【答案】分析:根據(jù)圓的方程找出圓心坐標(biāo),發(fā)現(xiàn)滿足條件的所有圓的圓心在一條直線上,所以這條直線與所有的圓都相交,②正確;根據(jù)圖象可知這些圓互相內(nèi)含,不存在一條定直線與所有的圓均相切,不存在一條定直線與所有的圓均不相交,所以①③錯(cuò);利用反證法,假設(shè)經(jīng)過原點(diǎn),將(0,0)代入圓的方程,因?yàn)樽筮厼槠鏀?shù),右邊為偶數(shù),故不存在k使上式成立,假設(shè)錯(cuò)誤,則圓不經(jīng)過原點(diǎn),④正確.
解答:解:根據(jù)題意得:圓心(k-1,3k),
圓心在直線y=3(x+1)上,故存在直線y=3(x+1)與所有圓都相交,選項(xiàng)②正確;
考慮兩圓的位置關(guān)系,
圓k:圓心(k-1,3k),半徑為k2,
圓k+1:圓心(k-1+1,3(k+1)),即(k,3k+3),半徑為(k+1)2,
兩圓的圓心距d==,
兩圓的半徑之差R-r=(k+1)2-k2=2k+
任取k=1或2時(shí),(R-r>d),Ck含于Ck+1之中,選項(xiàng)①錯(cuò)誤;
若k取無窮大,則可以認(rèn)為所有直線都與圓相交,選項(xiàng)③錯(cuò)誤;
將(0,0)帶入圓的方程,則有(-k+1)2+9k2=2k4,即10k2-2k+1=2k4(k∈N*),
因?yàn)樽筮厼槠鏀?shù),右邊為偶數(shù),故不存在k使上式成立,即所有圓不過原點(diǎn),選項(xiàng)④正確.
則真命題的代號是②④.
故答案為:②④
點(diǎn)評:本題是一道綜合題,要求學(xué)生會將直線的參數(shù)方程化為普通方程,會利用反證法進(jìn)行證明,會利用數(shù)形結(jié)合解決實(shí)際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個(gè)命題:
①存在一條定直線與所有的圓均相切;
②存在一條定直線與所有的圓均相交;
③存在一條定直線與所有的圓均不相交;
④所有的圓均不經(jīng)過原點(diǎn).
其中真命題的代號是
 
(寫出所有真命題的代號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西 題型:填空題

設(shè)有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個(gè)命題:
①存在一條定直線與所有的圓均相切;
②存在一條定直線與所有的圓均相交;
③存在一條定直線與所有的圓均不相交;
④所有的圓均不經(jīng)過原點(diǎn).
其中真命題的代號是______(寫出所有真命題的代號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年浙江省寧波市柔石中學(xué)高三(上)月考數(shù)學(xué)試卷3(解析版) 題型:填空題

設(shè)有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個(gè)命題:
①存在一條定直線與所有的圓均相切;
②存在一條定直線與所有的圓均相交;
③存在一條定直線與所有的圓均不相交;
④所有的圓均不經(jīng)過原點(diǎn).
其中真命題的代號是    (寫出所有真命題的代號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江西省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)有一組圓Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四個(gè)命題:
①存在一條定直線與所有的圓均相切;
②存在一條定直線與所有的圓均相交;
③存在一條定直線與所有的圓均不相交;
④所有的圓均不經(jīng)過原點(diǎn).
其中真命題的代號是    (寫出所有真命題的代號).

查看答案和解析>>

同步練習(xí)冊答案