A. | f(x)=lgx2,g(x)=2lg|x| | B. | f(x)=x,g(x)=$\root{3}{{x}^{3}}$ | ||
C. | f(x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$•\sqrt{x-2}$ | D. | f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x<-1}\end{array}\right.$ |
分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可.
解答 解:對(duì)于A:f(x)=lgx2=2lg|x|的定義域?yàn)閧x|x≠0},g(x)=2lg|x|的定義域?yàn)閧x|x≠0},定義域相同,對(duì)應(yīng)關(guān)系也相同,∴是同一函數(shù);
對(duì)于B:f(x)=x的定義域?yàn)镽,g(x)=$\root{3}{{x}^{3}}$=x的定義域?yàn)镽,定義域相同,對(duì)應(yīng)關(guān)系也相同,∴是同一函數(shù);
對(duì)于C:f(x)=$\sqrt{{x}^{2}-4}$的定義域?yàn)閧x|x≥2或x≤-2},而g(x)=$\sqrt{x+2}$$•\sqrt{x-2}$的定義域?yàn)閧x|x≥2},定義域不同,∴不是同一函數(shù);
對(duì)于D:f(x)=|x+1|=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x<-1}\end{array}\right.$的定義域?yàn)镽,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x<-1}\end{array}\right.$的定義域?yàn)镽,對(duì)應(yīng)關(guān)系也相同,∴是同一函數(shù);
故選:C.
點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $24+12\sqrt{3}$ | B. | $24+5\sqrt{3}$ | C. | $12+15\sqrt{3}$ | D. | $12+12\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com