【題目】已知兩點(diǎn)、,動(dòng)點(diǎn)軸上的射影是,且.

1)求動(dòng)點(diǎn)的軌跡方程;

2)設(shè)直線、的兩個(gè)斜率存在,分別記為、,若,求點(diǎn)的坐標(biāo);

3)若經(jīng)過(guò)點(diǎn)的直線與動(dòng)點(diǎn)的軌跡有兩個(gè)交點(diǎn)、,當(dāng)時(shí),求直線的方程.

【答案】1;(2;(3.

【解析】

1)設(shè),用坐標(biāo)表示,求出軌跡方程為

2)由,求出關(guān)系,與橢圓方程聯(lián)立,即可求解;

3)設(shè)出直線方程,與橢圓方程聯(lián)立,消去,得到關(guān)于的一元二次方程,由根與系數(shù)關(guān)系,得出兩點(diǎn)縱坐標(biāo)關(guān)系,將轉(zhuǎn)化為縱坐標(biāo)表示,即可求解.

1)設(shè),則,

,即為所求的軌跡方程;

2)直線、的兩個(gè)斜率存在,

,

聯(lián)立解得,即,

所以坐標(biāo)為;

(3)若直線斜率為0,,不合題意,

設(shè)直線方程為,

聯(lián)立,消去

,

設(shè),

,

,整理得

,

所求的直線方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在雙曲線,)上,且雙曲線的一條漸近線的方程是

(1)求雙曲線的方程;

(2)若過(guò)點(diǎn)且斜率為的直線與雙曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍;

(3)設(shè)(2)中直線與雙曲線交于兩個(gè)不同的點(diǎn),若以線段為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是一個(gè)菱形,三角形PAD是一個(gè)等腰三角形,∠BAD=∠PAD=,點(diǎn)E在線段PC上,且PE=3EC.

(1)求證:AD⊥PB;

(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示為一正方體的平面展開圖,在這個(gè)正方體中,有下列四個(gè)命題:

AFGC;

BDGC成異面直線且夾角為60

BDMN;

BG與平面ABCD所成的角為45.

其中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】類似于平面直角坐標(biāo)系,我們可以定義平面斜坐標(biāo)系:設(shè)數(shù)軸的交點(diǎn)為,與軸正方向同向的單位向量分別是,且的夾角為,其中。由平面向量基本定理,對(duì)于平面內(nèi)的向量,存在唯一有序?qū)崝?shù)對(duì),使得,把叫做點(diǎn)在斜坐標(biāo)系中的坐標(biāo),也叫做向量在斜坐標(biāo)系中的坐標(biāo)。在平面斜坐標(biāo)系內(nèi),直線的方向向量、法向量、點(diǎn)方向式方程、一般式方程等概念與平面直角坐標(biāo)系內(nèi)相應(yīng)概念以相同方式定義,如時(shí),方程表示斜坐標(biāo)系內(nèi)一條過(guò)點(diǎn)(2,1),且方向向量為(4,-5)的直線。

(1)若 ,且的夾角為銳角,求實(shí)數(shù)m的取值范圍;

(2)若,已知點(diǎn)和直線 ①求l的一個(gè)法向量;②求點(diǎn)A到直線l的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年8月8日是我國(guó)第十個(gè)全民健身日,其主題是:新時(shí)代全民健身動(dòng)起來(lái)。某市為了解全民健身情況,隨機(jī)從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖。

(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計(jì)值;

(2)(i)若從樣本中年齡在[50,70)的居民中任取2人贈(zèng)送健身卡,求這2人中至少有1人年齡不低于60歲的概率;

(ⅱ)已知該小區(qū)年齡在[10,80]內(nèi)的總?cè)藬?shù)為2000,若18歲以上(含18歲)為成年人,試估計(jì)該小區(qū)年齡不超過(guò)80歲的成年人人數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋擲兩顆骰子,計(jì)算:

1)事件兩顆骰子點(diǎn)數(shù)相同的概率;

2)事件點(diǎn)數(shù)之和小于7”的概率;

3)事件點(diǎn)數(shù)之和等于或大于11”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,BC所對(duì)的邊分別為a,bc,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積SsinC,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《數(shù)書九章》是中國(guó)南宋時(shí)期杰出數(shù)學(xué)家秦九韶的著作,其中在卷五“三斜求積”中提出了已知三角形三邊、、,求面積的公式,這與古希臘的海倫公式完全等價(jià),其求法是“以小斜冥并大斜冥減中斜冥,余半之,自乘于上,以小斜冥乘大斜冥減上,余四約之,為實(shí).一為從隅,開平方得積”若把以上這段文字寫出公式,即若,則

(1)已知的三邊,,,且,求證:的面積

(2)若,,求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案