精英家教網 > 高中數學 > 題目詳情

【題目】設直線系M:xcosθ+ysinθ=1,對于下列四個命題:
①不在直線系M中的點都落在面積為π的區(qū)域內
②直線系M中所有直線為一組平行線
③直線系M中所有直線均經過一個定點
④對于任意整數n(n≥3),存在正n邊形,其所有邊均在直線系M中的直線上
其中真命題的代號是(寫出所有真命題的代號).

【答案】①④
【解析】解:直線M:xcosθ+ysinθ=1,則點(0,0)到直線的距離d= =1.
因此直線系表示的是x2+y2=1的圓的所有切線,據此可以判斷:
①滿足條件的點的圓的面積為π,正確.
②不正確.
③M中所有直線均過一個定點,不正確;
④對于任意正整數n(n≥3),由于上述給出的圓有外切正多邊形,因此存在正n邊形其所有邊均在M中直線上,正確.
綜上可得:正確的命題是①④.①④
【考點精析】本題主要考查了一般式方程的相關知識點,需要掌握直線的一般式方程:關于的二元一次方程(A,B不同時為0)才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】【2017山西三區(qū)八校二!恳阎瘮(其中, 為常數且)在處取得極值.

(Ⅰ)當時,求的單調區(qū)間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分14分)

如圖,2015年春節(jié),攝影愛好者在某公園處,發(fā)現正前方處有一立柱,測得立柱頂端的仰角和立柱底部的俯角均為,已知的身高約為米(將眼睛距地面的距離按米處理)

(1)求攝影者到立柱的水平距離和立柱的高度;

(2)立柱的頂端有一長2米的彩桿繞中點與立柱所在的平面內旋轉攝影者有一視角范圍為的鏡頭,在彩桿轉動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某媒體對“男女延遲退休”這一公眾關注的問題進行了民意調查,如表是在某單位得到的數據(人數):
(1)能否有90%以上的把握認為對這一問題的看法與性別有關?

贊同

反對

合計

5

6

11

11

3

14

合計

16

9

25


(2)從贊同“男女延遲退休”16人中選出3人進行陳 述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率;
(3)若以這25人的樣本數據來估計整個地區(qū)的總體數據,現從該地區(qū)(人數很多)任選5人,記贊同“男女延遲退休”的人數為X,求X的數學期望.
附:

p(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農科所記錄了5組晝夜溫差與100顆種子發(fā)芽數,得到如表資料:

組號

1

2

3

4

5

溫差x(°C)

10

11

13

12

8

發(fā)芽數y(顆)

23

25

30

26

16

該所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求出線性回歸方程,再對被選取的2組數據進行檢驗.
(1)若選取的是第1組與第5組的兩組數據,請根據第2組至第4組的數據,求出y關于x的線性回歸方程 ;
(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式: = =

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ﹣2ax+1+lnx
(1)當a=0時,若函數f(x)在其圖象上任意一點A處的切線斜率為k,求k的最小值,并求此時的切線方程;
(2)若函數f(x)的極大值點為x1 , 證明:x1lnx1﹣ax12>﹣1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=asinx﹣bcosx的一條對稱軸為x= ,則直線l:ax﹣by+c=0的傾斜角為( )
A.45°
B.60°
C.120°
D.135°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分10分)一位網民在網上光顧某淘寶小店,經過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設該網民是否購買這五種商品相互獨立.

1)求該網民至少購買4種商品的概率;

2)用隨機變量表示該網民購買商品的種數,求的概率分布和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在圓心角為直角的扇形OAB中,分別以OA,OB為直徑作兩個半圓,在扇形OAB內隨機取一點,則此點取自陰影部分的概率是

查看答案和解析>>

同步練習冊答案