在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(3, ),求|PA|+|PB|的值.
解:(1)由ρ=2 sinθ,得x2+y2-2y=0,即x2+(y-)2=5.。。。。。。。4分
(2)解法一:將l的參數(shù)方程代入圓C的直角坐標(biāo)方程,

即t2-3t+4=0.
由于Δ=(3)2-4×4=2>0,
故可設(shè)t1,t2是上述方程的兩實(shí)根,
所以
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程是,圓C的極坐標(biāo)方程為
(1)求圓心C的直角坐標(biāo);
(2)由直線上的點(diǎn)向圓C引切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

動(dòng)點(diǎn)為參數(shù))的軌跡方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
(1)(本小題滿分5分)選修4-2:矩陣與變換。已知矩陣,A的一個(gè)特征值,屬于λ的特征向量是,求矩陣A與其逆矩陣.
(2) (本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,在曲線上求一點(diǎn),使它到直線的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線的參數(shù)方程是                                          (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知P(x,y)是圓x2+y2=2y上的動(dòng)點(diǎn).
(1)求2x+y的取值范圍;
(2)若x+y+c>0恒成立,求實(shí)數(shù)c的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(2).選修4 - 4:坐標(biāo)系與參數(shù)方程
以極點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位, 圓的方程為,圓的參數(shù)方程為(為參數(shù)),求兩圓的公共弦的長(zhǎng)度。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

選修4—4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,已知點(diǎn)的直角坐標(biāo)為,點(diǎn)的極坐標(biāo)為,若直線過(guò)點(diǎn),且傾斜角為,圓為圓心、為半徑。
(1)求直線的參數(shù)方程和圓的極坐標(biāo)方程;
(2)試判定直線和圓的位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線的參數(shù)方程是(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為,則直線被圓C所截得的弦長(zhǎng)等于   

查看答案和解析>>

同步練習(xí)冊(cè)答案