【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且經(jīng)過點(diǎn)A(0,﹣1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如果過點(diǎn) 的直線與橢圓交于M,N兩點(diǎn)(M,N點(diǎn)與A點(diǎn)不重合),求證:△AMN為直角三角形.

【答案】
(1)解:∵橢圓C: =1(a>b>0)的離心率為 ,且經(jīng)過點(diǎn)A(0,﹣1),

∴b=1.

,解得a=2.

∴橢圓C的標(biāo)準(zhǔn)方程為


(2)證明:若過點(diǎn) 的直線MN的斜率不存在,此時(shí)M,N兩點(diǎn)中有一個(gè)點(diǎn)與A點(diǎn)重合,不滿足題目條件.

若過點(diǎn) 的直線MN的斜率存在,設(shè)其斜率為k,則MN的方程為 ,

,得

設(shè)M(x1,y1),N(x2,y2),

,

∵A(0,﹣1),

=

∴AM⊥AN,∴△AMN為直角三角形.


【解析】(1)由橢圓C: =1(a>b>0)經(jīng)過點(diǎn)A(0,﹣1),求出b,由離心率為 ,求出a,由此能求出橢圓C的標(biāo)準(zhǔn)方程.(2)設(shè)MN的方程為 ,與橢圓聯(lián)立,得 ,由此利用韋達(dá)定理、根的判別式、向量的數(shù)量積,結(jié)合已知條件能證明△AMN為直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△ABC的周長為定值l,則它的面積最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x| <2x<4},B={x|0<log2x<2}.
(1)求A∩B和A∪B;
(2)記M﹣N={x|x∈M,且xN},求A﹣B與B﹣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E為BC的中點(diǎn),點(diǎn)M,N分別為棱DD1 , A1D1的中點(diǎn).

(1)求證:平面CMN∥平面A1DE;
(2)求證:平面A1DE⊥平面A1AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣2x﹣4y+1=0.
(1)求過點(diǎn)M(3,1)的圓C的切線方程;
(2)若直線l:ax﹣y+4=0與圓C相交于A,B兩點(diǎn),且弦AB的長為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2=2px(p>0)與直線y=x+1相切,A(x1 , y1),B(x2 , y2)(x1≠x2)是拋物線上兩個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),且|AF|+|BF|=8.
(1)求p的值;
(2)線段AB的垂直平分線l與x軸的交點(diǎn)是否為定點(diǎn),若是,求出交點(diǎn)坐標(biāo),若不是,說明理由;
(3)求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命題.
(1)求實(shí)數(shù)m的取值集合B;
(2)設(shè)不等式(x﹣3a)(x﹣a﹣2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某位同學(xué)在2015年5月進(jìn)行社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了5月1日至5月5日的白天平均氣溫x(°C)與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):

5月1日

5月2日

5月3日

5月4日

5月5日

平均氣溫x(°C)

9

10

12

11

8

銷量y(杯)

23

25

30

26

21


(1)若從這五組數(shù)據(jù)中隨機(jī)抽出2組,求抽出的2組數(shù)據(jù)不是相鄰2天數(shù)據(jù)的概率;
(2)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程 = x+
(參考公式: = =

查看答案和解析>>

同步練習(xí)冊(cè)答案