如圖所示,直線l1和l2相交于點(diǎn)M,l1⊥l2,點(diǎn)N∈l1,以A、B為端點(diǎn)的曲線段C上任一點(diǎn)到l2的距離與到點(diǎn)N的距離相等.若△AMN為銳角三角形,|AM|=,|AN|=3,且|NB|=6,建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段C的方程.

y2=8x(1≤x≤4,y>0)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線上的任意一點(diǎn)到該拋物線焦點(diǎn)的距離比該點(diǎn)到軸的距離多1.

(1)求的值;
(2)如圖所示,過(guò)定點(diǎn)(2,0)且互相垂直的兩條直線、分別與該拋物線分別交于、、四點(diǎn).
(i)求四邊形面積的最小值;
(ii)設(shè)線段、的中點(diǎn)分別為、兩點(diǎn),試問(wèn):直線是否過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點(diǎn),且·=0,試判斷直線l與圓C的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

給定橢圓C:=1(a>b>0),稱圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為.
(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B、D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求·的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過(guò)點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在直線2x-y-4=0上,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知過(guò)曲線上任意一點(diǎn)作直線的垂線,垂足為,且.
⑴求曲線的方程;
⑵設(shè)、是曲線上兩個(gè)不同點(diǎn),直線的傾斜角分別為,
當(dāng)變化且為定值時(shí),證明直線恒過(guò)定點(diǎn),
并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓,經(jīng)過(guò)橢圓的右焦點(diǎn)F及上頂點(diǎn)B,過(guò)圓外一點(diǎn)傾斜角為的直線交橢圓于C,D兩點(diǎn),

(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)B、C的坐標(biāo)為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設(shè)頂點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)曲線E與y軸負(fù)半軸的交點(diǎn)為D,過(guò)點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且+5=0.
 
(1)求橢圓E的離心率; (2)已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連結(jié)MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連結(jié)MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問(wèn)是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案