【題目】體育課的排球發(fā)球項目考試的規(guī)則是:每位學(xué)生最多可發(fā)球3次,一旦發(fā)球成功,則停止發(fā)球,否則一直發(fā)到3次為止.設(shè)學(xué)生一次發(fā)球成功的概率為p (p≠0),發(fā)球次數(shù)為X,若X的數(shù)學(xué)期望EX>1.75,則p的取值范圍是( )
A.(0, )
B.( ,1)
C.(0, )
D.( ,1)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等比數(shù)列,Sn為數(shù)列{an}的前n項和,且a3=3,S3=9
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2 ,且{bn}為遞增數(shù)列,若cn= ,求證:c1+c2+c3+…+cn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,a,b,c分別為角A,B,C的對邊,csinC﹣asinA=( c﹣b)sinB.
(Ⅰ)求角A;
(Ⅱ)若a=1,求三角形ABC面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位.且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點A,B.若點P的坐標(biāo)為(1,2),求|PA|+|PB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)當(dāng)x>0時, 恒成立,求整數(shù)k的最大值;
(3)試證明:(1+12)(1+23)(1+34)…(1+n(n+1))>e2n﹣3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,PB=PD=2,AC∩BD=O. (Ⅰ)證明:PC⊥BD
(Ⅱ)若E是PA的中點,且△ABC與平面PAC所成的角的正切值為 ,求二面角A﹣EC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,M是邊BC的中點,tan∠BAM= ,cos∠AMC=﹣ (Ⅰ)求角B的大;
(Ⅱ)若角∠BAC= ,BC邊上的中線AM的長為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在(m,n)上的導(dǎo)函數(shù)為g(x),x∈(m,n),g(x)若的導(dǎo)函數(shù)小于零恒成立,則稱函數(shù)f(x)在(m,n)上為“凸函數(shù)”.已知當(dāng)a≤2時, ,在x∈(﹣1,2)上為“凸函數(shù)”,則函數(shù)f(x)在(﹣1,2)上結(jié)論正確的是( )
A.既有極大值,也有極小值
B.有極大值,沒有極小值
C.沒有極大值,有極小值
D.既無極大值,也沒有極小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在三棱柱ABC﹣A1B1C1中,B1B⊥平面ABC,∠ABC=90°,B1B=AB=2BC=4,D、E分別是B1C1 , A1A的中點.
(1)求證:A1D∥平面B1CE;
(2)設(shè)M是的中點,N在棱AB上,且BN=1,P是棱AC上的動點,直線NP與平面MNC所成角為θ,試問:θ的正弦值存在最大值嗎?若存在,請求出 的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com