【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機模擬的方法估計小張三次射擊恰有兩次命中十環(huán)的概率,先由計算器產(chǎn)生09之間取整數(shù)值的隨機數(shù),指定24,68表示命中十環(huán),01,3,5,7,9表示未命中十環(huán),再以每三個隨機數(shù)為一組,代表三次射擊的結果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

321 421 292 925 274 632 800 478 598 663 531 297 396

021 506 318 230 113 507 965

據(jù)此估計,小張三次射擊恰有兩次命中十環(huán)的概率為()

A. 0.25B. 0.30C. 0.35D. 0.40

【答案】B

【解析】

由題意知模擬三次射擊的結果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù),在20組隨機數(shù)中表示三次射擊恰有兩次命中十環(huán)的有可以通過列舉得到共6組隨機數(shù),根據(jù)概率公式,得到結果.

解:由題意知模擬三次射擊的結果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù),

20組隨機數(shù)中表示三次射擊恰有兩次命中的有:421292、274、632478、663

6組隨機數(shù),∴所求概率為,故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,MN分別是BC,BB1,A1D的中點.

1)證明:MN∥平面C1DE

2)求AM與平面A1MD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學在高二下學期開設四門數(shù)學選修課,分別為《數(shù)學史選講》.《球面上的幾何》.《對稱與群》.《矩陣與變換》.現(xiàn)有甲.乙.丙.丁四位同學從這四門選修課程中選修一門,且這四位同學選修的課程互不相同,下面關于他們選課的一些信息:①甲同學和丙同學均不選《球面上的幾何》,也不選《對稱與群》:②乙同學不選《對稱與群》,也不選《數(shù)學史選講》:③如果甲同學不選《數(shù)學史選講》,那么丁同學就不選《對稱與群》.若這些信息都是正確的,則丙同學選修的課程是( 。

A. 《數(shù)學史選講》B. 《球面上的幾何》C. 《對稱與群》D. 《矩陣與變換》

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標平面內(nèi),每個點繞原點按逆時針方向旋轉的變換所對應的矩陣為,每個點橫、縱坐標分別變?yōu)樵瓉淼?/span>倍的變換所對應的矩陣為.

(I)求矩陣的逆矩陣

(Ⅱ)求曲線先在變換作用下,然后在變換作用下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)a=1,b=2,求函數(shù)在點(2,f(2))處的切線方程;

(2)求函數(shù)的單調區(qū)間;

(3)若a<b,任取存在實數(shù)m使恒成立,m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標平面內(nèi),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù)).

1)分別求出曲線和直線的直角坐標方程;

2)若點在曲線上,且到直線的距離為1,求滿足這樣條件的點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠家為了了解某新產(chǎn)品使用者的年齡情況,現(xiàn)隨機調査100 位使用者的年齡整理后畫出的頻率分布直方圖如圖所示.

(1)求100名使用者中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計所有使用者的平均年齡;

(2)若已從年齡在的使用者中利用分層抽樣選取了6人,再從這6人中選出2人,求這2人在不同的年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價

9

9.2

9.4

9.6

9.8

10

銷量

100

94

93

90

85

78

(1)若銷量與單價服從線性相關關系,求該回歸方程;

(2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價,可使工廠獲得最大利潤。

附:對于一組數(shù)據(jù),……,

其回歸直線的斜率的最小二乘估計值為

本題參考數(shù)值:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, 上,且.

(1)求證: 的中點;

(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案