解答:解:(I)當(dāng)0≤x≤a時(shí),f(x)=
;
當(dāng)x>a時(shí),f(x)=
,
∴當(dāng)0≤x≤a時(shí),f′(x)=
<0,f(x)在(0,a)上單調(diào)遞減;
當(dāng)x>a時(shí),f′(x)=
>0,f(x)在(a,+∞)上單調(diào)遞增.
①若a≥9,則f(x)在(0,9)上單調(diào)遞減,g(a)=f(0)=
,
②若0<a<9,則f(x)在(0,a)上單調(diào)遞減,在(a,9)上單調(diào)遞增,
∴g(a)=max{f(0),f(9)},
∵f(0)-f(9)=
-
=
,
∴當(dāng)0<a≤3時(shí),g(a)=f(9)=
,
當(dāng)1<a<4時(shí),g(a)=f(0)=
,
綜上所述,g(a)=
;
(Ⅱ)由(I)知,當(dāng)a≥9時(shí),f(x)在(0,9)上單調(diào)遞減,故不滿足要求;
當(dāng)0<a<9時(shí),f(x)在(0,a)上單調(diào)遞減,在(a,9)上單調(diào)遞增,
若存在x
1,x
2∈(0,9)(x
1<x
2),使曲線y=f(x)在兩點(diǎn)處的切線互相垂直,
則x
1∈(0,a),x
2∈(a,9),
且f′(x
1)f′(x
2)=-1
∴
•
=-1,
∴x
1+3a=
①
∵x
1∈(0,a),x
2∈(a,9),
∴x
1+3a∈(3a,4a),
∈(
,1)
∴①成立等價(jià)于A=(3a,4a)與B=(
,1)的交集非空,
∵
<4a,∴當(dāng)且僅當(dāng)0<3a<1,即0<a<
時(shí),A∩B≠∅
綜上所述,存在a使函數(shù)y=f(x)在區(qū)間(0,9)內(nèi)的圖象上存在兩點(diǎn),在該兩點(diǎn)處的切線互相垂直,且a的取值范圍是(0,
).