設函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。
(Ⅰ)函數(shù)在定義域上單調遞增;(Ⅱ)當且僅當有極值點; 當時,有惟一最小值點;當時,有一個極大值點和一個極小值點

試題分析:(Ⅰ)函數(shù)在定義域上的單調性的方法,一是利用定義,二是利用導數(shù),此題既有代數(shù)函數(shù)又有對數(shù)函數(shù),顯然利用導數(shù)判斷,只需對求導,判斷的符號即可;(Ⅱ)求的極值,只需對求導即可,利用導數(shù)求函數(shù)的極值一般分為四個步驟:①確定函數(shù)的定義域;②求出;③令,列表;④確定函數(shù)的極值.此題由(Ⅰ)得,當時,函數(shù)無極值點,只需討論的情況,解的根,討論在范圍內根的個數(shù),從而確定的取值范圍及的極值點,值得注意的是,求出的根時,忽略討論根是否在定義域內,而出錯.
試題解析:(Ⅰ)由題意知,的定義域為  ∴當時,,函數(shù)在定義域上單調遞增.
(Ⅱ)①由(Ⅰ)得,當時,函數(shù)無極值點,②時,有兩個相同的解,但當時,,當時,時,函數(shù)上無極值點,③當時,有兩個不同解,,時,,而,此時 ,在定義域上的變化情況如下表:










極小值

由此表可知:當時,有惟一極小值點 
ii)  當時,0<<1,此時,,的變化情況如下表:














極大值

極小值

由此表可知:時,有一個極大值,和一個極小值點; 綜上所述:當且僅當有極值點; 當時,有惟一最小值點;當時,有一個極大值點和一個極小值點
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù).
(1)當時,求函數(shù)的最大值;
(2)令其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;
(3)當,,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)求函數(shù)的單調區(qū)間;
(3)是否存在實數(shù),使函數(shù)上有唯一的零點,若有,請求出的范圍;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題13分)已知函數(shù)
(1)若實數(shù)求函數(shù)上的極值;
(2)記函數(shù),設函數(shù)的圖像軸交于點,曲線點處的切線與兩坐標軸所圍成圖形的面積為則當時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)當時,討論函數(shù)在[上的單調性;
(Ⅱ)如果,是函數(shù)的兩個零點,為函數(shù)的導數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中
(I)求函數(shù)的單調區(qū)間;
(II)當時,若存在,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知 ().
(1)當時,判斷在定義域上的單調性;
(2)若上的最小值為,求的值;
(3)若上恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)(x∈R)滿足>f(x),則   (    )
A.f(2)<f(0)B.f(2)≤f(0)
C.f(2)=f(0)D.f(2)>f(0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,的導函數(shù),則得圖像是(   )

查看答案和解析>>

同步練習冊答案