(本小題滿分12分)
已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設O為坐標原點,點A,B分別在橢圓上,,求直線的方程.
(1) (2)

試題分析:.(1)由已知可設橢圓的方程為 
其離心率為,故,則 
故橢圓的方程為 
(2)解法一 兩點的坐標分別記為 
及(1)知,三點共線且點,不在軸上,
因此可以設直線的方程為 
代入中,得,所以 
代入中,則,所以
,得,即
解得,故直線的方程為 
解法二 兩點的坐標分別記為 
及(1)知,三點共線且點,不在軸上,
因此可以設直線的方程為 
代入中,得,所以 
,得, 
代入中,得,即 
解得,故直線的方程為
點評:再求橢圓方程時要注意焦點的位置,第二問中向量關系轉(zhuǎn)化為坐標關系,A,B兩點坐標可將向量與兩橢圓方程聯(lián)系起來
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)
若直線過點(0,3)且與拋物線y2=2x只有一個公共點,求該直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知圓的圓心為原點,且與直線相切。

(1)求圓的方程;
(2)點在直線上,過點引圓的兩條切線,切點為,求證:直線恒過定點。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的離心率,過點的直線與原點的距離為。⑴求橢圓的方程;⑵已知定點,若直線與橢圓交于兩點,問:是否存在的值,使以為直徑的圓過點?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左右焦點為,弦過點,若△的內(nèi)切圓周長為,點坐標分別為,則            。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設拋物線的焦點為,準線為,為拋物線上的一點,,垂足為.若直線的斜率為,則
A.4B.8C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設雙曲線的右焦點為,左右頂點分別為,過且與雙曲線的一條漸近線平行的直線與另一條漸近線相交于,若恰好在以為直徑的圓上,則雙曲線的離心率為________ ______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)設直線與橢圓相交于兩個不同的點,與軸相交于點,記為坐標原點.
(1)證明:
(2)若的面積及橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)
給定橢圓C:,稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為,其短軸的一個端點到點的距離為
(1)求橢圓C和其“準圓”的方程;
(2)若點是橢圓C的“準圓”與軸正半軸的交點,是橢圓C上的兩相異點,且軸,求的取值范圍;
(3)在橢圓C的“準圓”上任取一點,過點作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

查看答案和解析>>

同步練習冊答案