【題目】已知二次函數(shù).

1為偶函數(shù),試判斷的奇偶性;

2)若方程有兩個(gè)不相等的實(shí)根,當(dāng)時(shí)判斷上的單調(diào)性;

3)當(dāng)時(shí),問是否存在x的值,使?jié)M足的任意實(shí)數(shù)a,不等式恒成立?并說明理由.

【答案】(1)為奇函數(shù)(2)答案不唯一,具體見解析(3)存在,詳見解析

【解析】

1)根據(jù)偶函數(shù)的定義可知,可求出的值,求出的定義域看是否對(duì)稱,然后根據(jù)奇偶性定義進(jìn)行判定;

2有兩個(gè)不相等的實(shí)根可轉(zhuǎn)化成,可判定對(duì)稱軸的范圍,從而確定函數(shù)上的單調(diào)性;

3)不等式恒成立可轉(zhuǎn)化成對(duì)于時(shí)恒成立,建立不等式組,解之即可求出所求.

解:(1)若為偶函數(shù),有,則,定義域?yàn)?/span>,且,所以為奇函數(shù).

2)由,整理得:,且,即,又的對(duì)稱軸為

所以當(dāng)時(shí),上為增函數(shù);當(dāng)時(shí),上為減函數(shù).

3)由,即,有

由已知它對(duì)于時(shí)上面不等式恒成立,則有

解得:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:t為參數(shù)),直線l與曲線C分別交于兩點(diǎn).

1)寫出曲線C和直線l的普通方程;

2)若點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項(xiàng)點(diǎn))來處理污水.管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長(zhǎng)度L表示為的函數(shù),并寫出定義域;

(2)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度L.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的長(zhǎng)軸長(zhǎng)與焦距比為21,左焦點(diǎn)F(﹣2,0),一定點(diǎn)為P(﹣8,0).

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)過P的直線與橢圓交于P1、P2兩點(diǎn),設(shè)直線P1F、P2F的斜率分別為k1、k2,求證:k1+k2=0

3)求△P1P2F面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,平面,,分別為,的中點(diǎn).

1)證明:平面;

2)若與平面所成的角為,,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場(chǎng)規(guī)劃將果樹種在正方形的場(chǎng)地內(nèi).為了保護(hù)果樹不被風(fēng)吹,決定在果樹的周圍種松樹. 在下圖里,你可以看到規(guī)劃種植果樹的列數(shù)(n),果樹數(shù)量及松樹數(shù)量的規(guī)律:

1)按此規(guī)律,n = 5時(shí)果樹數(shù)量及松樹數(shù)量分別為多少;并寫出果樹數(shù)量,及松樹數(shù)量關(guān)于n的表達(dá)式

2)定義: 增加的速度;現(xiàn)農(nóng)場(chǎng)想擴(kuò)大種植面積,問:哪種樹增加的速度會(huì)更快?并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長(zhǎng)方體中,AD=2,AB=AE=1M為矩形AEHD內(nèi)的一點(diǎn),如果∠MGF=MGHMG和平面EFG所成角的正切值為那么點(diǎn)M到平面EFGH的距離是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,焦距為,斜率為k的直線l與橢圓M有兩個(gè)不同的交點(diǎn)A、B

1)求橢圓M的方程;

2)設(shè)P(﹣2,0),直線PA與橢圓M的另一個(gè)交點(diǎn)為C,直線PB與橢圓M的另一個(gè)交點(diǎn)為D,若C、D與點(diǎn)共線,求斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為2,過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過點(diǎn)F且斜率不為零的直線l與橢圓交于A,B兩點(diǎn),以線段AP為直徑的圓與直線的另一個(gè)交點(diǎn)為Q,證明:直線BQ恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案