【題目】在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c,已知c=2,C= . (Ⅰ)若△ABC的面積等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面積.

【答案】解:(Ⅰ)∵c=2,C= ,c2=a2+b2﹣2abcosC ∴a2+b2﹣ab=4,
又∵△ABC的面積等于 ,
,
∴ab=4
聯(lián)立方程組 ,解得a=2,b=2
(Ⅱ)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sin2A=4sinAcosA,
∴sinBcosA=2sinAcosA
當(dāng)cosA=0時(shí), , , ,求得此時(shí)
當(dāng)cosA≠0時(shí),得sinB=2sinA,由正弦定理得b=2a,
聯(lián)立方程組 解得 ,
所以△ABC的面積
綜上知△ABC的面積
【解析】(Ⅰ)先通過(guò)余弦定理求出a,b的關(guān)系式;再通過(guò)正弦定理及三角形的面積求出a,b的另一關(guān)系式,最后聯(lián)立方程求出a,b的值.(Ⅱ)通過(guò)C=π﹣(A+B)及二倍角公式及sinC+sin(B﹣A)=2sin2A,求出∴sinBcosA=2sinAcosA.當(dāng)cosA=0時(shí)求出a,b的值進(jìn)而通過(guò) absinC求出三角形的面積;當(dāng)cosA≠0時(shí),由正弦定理得b=2a,聯(lián)立方程解得a,b的值進(jìn)而通過(guò) absinC求出三角形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的有_________.

①函數(shù)的一個(gè)對(duì)稱(chēng)中心為

②在中, 的中點(diǎn),則;

③在中, 的充要條件;

④定義,已知,則的最大值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將參加數(shù)學(xué)競(jìng)賽的1000名學(xué)生編號(hào)如下:0001,0002,003,…,1000,打算從中抽取一個(gè)容量為50的樣本,按系統(tǒng)抽樣的方法把編號(hào)分成50個(gè)部分,如果第一部分編號(hào)為0001,0002,0003,…,0020,第一部分隨機(jī)抽取一個(gè)號(hào)碼為0013,那么抽取的第40個(gè)號(hào)碼

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐的底面為直角梯形, , , ,且 , 的中點(diǎn)。

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求的極值;

Ⅱ)當(dāng)時(shí),討論的單調(diào)性;

)若對(duì)于任意的都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a=0時(shí),求f(x)的極值.
(2)當(dāng)a≠0時(shí),若f(x)是減函數(shù),求a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有編號(hào)為1,2,3的三個(gè)白球,編號(hào)為4,5,6的三個(gè)黑球,這六個(gè)球除編號(hào)和顏色外完全相同,現(xiàn)從中任意取出兩個(gè)球.
(1)求取得的兩個(gè)球顏色相同的概率;
(2)求取得的兩個(gè)球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求f(x)的單調(diào)區(qū)間;
(2)求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(3)求證:對(duì)任意的正數(shù)a與b,恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x,y滿(mǎn)足約束條件 ,且向量 =(3,2), =(x,y),則 的取值范圍(
A.[ ,5]
B.[ ,5]
C.[ ,4]
D.[ ,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案