(本小題滿分14分)
已知圓方程:,求圓心到直線的距離的取值范圍.

試題分析:將圓方程配方得(2分)
故滿足,解得(6分)
由方程得圓心到直線的距離
,(10分)
,得(14分)
點評:本題中特別要注意方程表示圓的充要條件,此條件對參數(shù)范圍的限定;點到直線的距離,本題難度適中
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與圓相交于,兩點,且,則的取值范圍是( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓過點,圓心在直線上,且半徑為5,則圓的方程為_____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知圓和圓.
(1)若直線經過點(2,-1)和圓的圓心,求直線的方程;
(2)若點(2,-1)為圓的弦的中點,求直線的方程;
(3)若直線過點,且被圓截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;
(Ⅱ)求以點為圓心,且被直線截得的弦長為4的⊙的方程;
(Ⅲ)設為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為. 試探究:平面內是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

上的點到直線距離的最大值是(    )       
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分l0分)
已知圓的圓心為,半徑為。直線的參數(shù)方程為為參數(shù)),且,點的直角坐標為,直線與圓交于兩點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 (本小題滿分10分)選修4-1:幾何證明選講
如圖,AB是的直徑,AC是弦,直線CE和切于點C, AD丄CE,垂足為D.

(I) 求證:AC平分;
(II) 若AB=4AD,求的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,“直線,與曲線相切”的充要條件是     

查看答案和解析>>

同步練習冊答案