(2009•楊浦區(qū)一模)(文)在體積為4
3
π
的球的表面上有A、B、C三點(diǎn),AB=1,BC=
2
,A、C
兩點(diǎn)的球面距離為
3
3
π
.則
AB
BC
=
0
0
分析:根據(jù)球的體積,首先就要先計(jì)算出球的半徑.再根據(jù)A、C兩點(diǎn)的球面距離,可求得
AC
所對(duì)的圓心角的度數(shù),進(jìn)而根據(jù)余弦定理可得線段AC的長(zhǎng)度為
3
,所以△ABC為直角三角形,所以線段AC的中點(diǎn)即為ABC所在平面的小圓圓心,利用向量垂直的充要條件得到結(jié)論.
解答:解:設(shè)球的半徑為R,則 V=
4
3
πR3=4
3
π
,
R=
3

設(shè)A、C兩點(diǎn)對(duì)球心張角為θ,則
AC
=Rθ=
3
θ=
3
3
π

θ=
π
3
,
∴由余弦定理可得:AC=
3
,
∴AC為ABC所在平面的小圓的直徑,
∴∠ABC=90°,
所以
AB
BC
=0
故答案為0.
點(diǎn)評(píng):本小題主要考查立體幾何球面距離及向量垂直的充要條件,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)設(shè)函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)榧螦,集合B={x|
5x+1
>1}.請(qǐng)你寫(xiě)出一個(gè)一元二次不等式,使它的解集為A∩B,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)研究人員發(fā)現(xiàn)某種特別物質(zhì)的溫度y(單位:攝氏度)隨時(shí)間x(單位:分鐘)的變化規(guī)律是:y=m2x+21-x(x≥0,并且m>0).
(1)如果m=2,求經(jīng)過(guò)多少時(shí)間,該溫度為5攝氏度;
(2)若該物質(zhì)的溫度總不低于2攝氏度,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)若將一顆質(zhì)地均勻的骰子,先后拋擲兩次,出現(xiàn)向上的點(diǎn)數(shù)分別為a、b,設(shè)復(fù)數(shù)z=a+bi,則使復(fù)數(shù) z2為純虛數(shù)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)若集合A={x||x-1|>2},U=R,則?UA=
{x|-1≤x≤3}
{x|-1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•楊浦區(qū)一模)命題“若a≥b,則a3≥b3”的逆命題是
若a3≥b3,則a≥b
若a3≥b3,則a≥b

查看答案和解析>>

同步練習(xí)冊(cè)答案