【題目】已知函數(shù).
(1)當(dāng)x∈[1,4]時,求函數(shù)的值域;
(2)如果對任意的x∈[1,4],不等式恒成立,求實數(shù)k的取值范圍
【答案】(1) [0,2]. (2) (-∞,-3).
【解析】
試題分析:(1) 令t=log2x,則函數(shù)h(x)轉(zhuǎn)化為關(guān)于t 的二次函數(shù):h(x)=-2(t-1)2+2 ,根據(jù)x∈[1,4],得t∈[0,2],結(jié)合對稱軸與定義區(qū)間位置關(guān)系確定函數(shù)最值和值域(2) 令t=log2x,則(3-4t)(3-t)>k·t對一切t∈[0,2]恒成立,當(dāng)t=0時,k∈R;當(dāng)t∈(0,2]時,利用變量分離法轉(zhuǎn)化為對應(yīng)函數(shù)最值:最小值,根據(jù)基本不等式求最值:即得實數(shù)k的取值范圍
試題解析:(1)h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2,
因為x∈[1,4],所以log2x∈[0,2],
故函數(shù)h(x)的值域為[0,2].
(2)由f(x2)·f()>k·g(x),
得(3-4log2x)(3-log2x)>k·log2x,
令t=log2x,因為x∈[1,4],所以t=log2x∈[0,2],
所以(3-4t)(3-t)>k·t對一切t∈[0,2]恒成立,
①當(dāng)t=0時,k∈R;
②當(dāng)t∈(0,2]時,恒成立,即,因為,當(dāng)且僅當(dāng)即時取等號,所以的最小值為-3,
綜上,k∈(-∞,-3).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為1,弧是以點為圓心的圓弧.
(1)在正方形內(nèi)任取一點,求事件“”的概率;
(2)用大豆將正方形均勻鋪滿,經(jīng)清點,發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請據(jù)此估計圓周率的近似值(精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的方程是,圓的參數(shù)方程是(為參數(shù)).以原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系.
(1)分別求直線與圓的極坐標(biāo)方程;
(2)射線:()與圓的交點為、兩點,與直線交于點,射線:與圓交于,兩點,與直線交于點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩數(shù)字游戲,先由甲任想一個數(shù)字記為,再由乙猜甲剛才想的數(shù)字把乙想的數(shù)字記為,且, ,記.
(1)求的概率;
(2)若,則稱“甲乙心有靈犀”,求“甲乙心有靈犀”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品進貨價每件50元,據(jù)市場調(diào)查,當(dāng)銷售價格(每件x元)在50≤ x ≤80時,每天售出的件數(shù)為P=,每天獲得的利潤為y(元)
(1)寫出關(guān)于x的函數(shù)y的表達式;
(2)若想每天獲得的利潤最多,問售價應(yīng)定為每件多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知c>0,設(shè)命題p:函數(shù)為減函數(shù).命題q:當(dāng)時,函數(shù)f(x)=x+>恒成立.如果“p∨q”為真命題,“p∧q”為假命題,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3四個數(shù)中任取的一個數(shù),是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com