已知長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點,則直線AE與平面A1ED1所成角的大小為


  1. A.
    60°
  2. B.
    90°
  3. C.
    45°
  4. D.
    以上都不正確
B
分析:根據(jù)本題的條件,E是BB1的中點且AA1=2,AB=BC=1,容易證明∠AEA1=90°,再由長方體的性質(zhì)容易證明AD⊥平面ABB1A1,從而證明AE⊥平面A1ED1,是一個特殊的線面角.
解答:∵E是BB1的中點且AA1=2,AB=BC=1,
∴∠AEA1=90°,
又在長方體ABCD-A1B1C1D1中,AD⊥平面ABB1A1
∴A1D1⊥AE,
∴AE⊥平面A1ED1
故選B
點評:本題考查線面角的求法,根據(jù)直線與平面所成角必須是該直線與其在這個平面內(nèi)的射影所成的銳角,還有兩個特殊角,而立體幾何中求角的方法有兩種,幾何法和向量法,幾何法的思路是:作、證、指、求,向量法則是建立適當?shù)淖鴺讼,選取合適的向量,求兩個向量的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知長方體ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4,點M是棱D1C1的中點.
(1)試用反證法證明直線AB1與BC1是異面直線;
(2)求直線AB1與平面DA1M所成的角(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1中,DA=DD1=1,DC=
2
,點E是B1C1的中點,點F在AB上,建立空間直角坐標系如圖所示.
(1)求
AE
的坐標及長度;
(2)求點F的坐標,使直線DF與AE的夾角為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1中,M、N分別是BB1和BC的中點,AB=4,AD=2,BB1=2
15
,求異面直線B1D與MN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知長方體ABCD-A1B1C1D1,AB=BC=1,BB1=2,連接B1C,過B點作B1C.
的垂線交CC1于E,交B1C于F.
(I)求證:A1C⊥平面EBD;
(Ⅱ)求直線DE與平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1,下列向量的數(shù)量積一定不為0的是( 。
精英家教網(wǎng)
A、
AD1
B1C
B、
BD1
AC
C、
AB
AD1
D、
BD1
BC

查看答案和解析>>

同步練習(xí)冊答案