【題目】已知函數(shù)

(Ⅰ)若關(guān)于的不等式上恒成立,求的取值范圍;

(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷上是否存在極值.若存在,判斷極值的正負;若不存在,請說明理由.

【答案】(Ⅰ);(Ⅱ)當時, 上不存在極值;當時, 上存在極值,且極值均為正.

【解析】試題分析:(1)不等式恒成立問題,一般先利用變量分離轉(zhuǎn)化為對應(yīng)函數(shù)最值問題: 的最大值,利用導(dǎo)數(shù)研究函數(shù)最值,易得上單調(diào)遞減,所以,因此,(2)即研究導(dǎo)函數(shù)的零點情況,先求導(dǎo)數(shù),確定研究對象為,再求目標函數(shù)導(dǎo)數(shù),確定單調(diào)性:先增后減,兩個端點值都小于零,討論最大值是否大于零,最后結(jié)合零點存在定理確定極值點個數(shù).

試題解析:解:(Ⅰ)由,得

上恒成立.

設(shè)函數(shù)

,∴

∴當時,

上單調(diào)遞減.

∴當時,

,即的取值范圍是

(Ⅱ),

設(shè),則

,得

時, ;當時,

上單調(diào)遞增,在上單調(diào)遞減.

, ,

據(jù)(Ⅰ),可知

(ⅰ)當,即時,

上單調(diào)遞減.

∴當時, 上不存在極值.

(ⅱ)當,即時,

則必定,使得,且

變化時, , 的變化情況如下表:

-

0

+

0

-

-

0

+

0

-

極小值

極大值

∴當時, 上的極值為,且

設(shè),其中

,∴上單調(diào)遞增, ,當且僅當時取等號.

,∴

∴當時, 上的極值

綜上所述:當時, 上不存在極值;當時, 上存在極值,且極值均為正.

注:也可由,得.令后再研究上的極值問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機的普及,使用手機上網(wǎng)成為了人們?nèi)粘I畹囊徊糠郑芏嘞M者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總?cè)藬?shù)、經(jīng)濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:

(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合的關(guān)系?并指出是正相關(guān)還是負相關(guān);

(2)①求出關(guān)于的回歸方程;

②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預(yù)測長沙市一個月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.

參考數(shù)據(jù):,.

參考公式:相關(guān)系數(shù),回歸直線方程

其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一某班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖因事故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

(1)求分數(shù)在[50,60)的頻率及全班人數(shù);

(2)求分數(shù)在[80,90)的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;

(3)若規(guī)定:90(包含90)以上為優(yōu)秀,現(xiàn)從分數(shù)在80(包含80)以上的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中至少有一份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程恰有四個不同的實數(shù)根當函數(shù)時,實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“2019是一個重要的時間節(jié)點——中華人民共和國成立70周年,和全面建成小康社會的 關(guān)鍵之年.70年披荊斬棘,70年砥礪奮進,70年風雨兼程,70年滄桑巨變,勤勞勇敢的中國 人用自己的雙手創(chuàng)造了一項項輝煌的成績,取得了舉世矚目的成就.趁此良機,李明在天貓網(wǎng)店銷售新中國成立70周年紀念冊,每本紀念冊進價4元,物流費、管理費共為/本,預(yù)計當每本紀念冊的售價為元(時,月銷售量為千本.

(I)求月利潤(千元)與每本紀念冊的售價X的函數(shù)關(guān)系式,并注明定義域:

(II)當為何值時,月利潤最大?并求出最大月利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形平面.

1)求證:

2)求異面直線所成角的大。

3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的最小正周期、最小值、對稱軸、對稱中心;

(2)設(shè)的內(nèi)角的對邊分別為,且,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足,且當時,成立,若,,則ab,c的大小關(guān)系是()

A. aB. C. D. c

查看答案和解析>>

同步練習冊答案