【題目】已知函數(shù).
(Ⅰ)若關(guān)于的不等式在上恒成立,求的取值范圍;
(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷在上是否存在極值.若存在,判斷極值的正負;若不存在,請說明理由.
【答案】(Ⅰ);(Ⅱ)當時, 在上不存在極值;當時, 在上存在極值,且極值均為正.
【解析】試題分析:(1)不等式恒成立問題,一般先利用變量分離轉(zhuǎn)化為對應(yīng)函數(shù)最值問題: 的最大值,利用導(dǎo)數(shù)研究函數(shù)最值,易得在上單調(diào)遞減,所以,因此,(2)即研究導(dǎo)函數(shù)的零點情況,先求導(dǎo)數(shù),確定研究對象為,再求目標函數(shù)導(dǎo)數(shù),確定單調(diào)性:先增后減,兩個端點值都小于零,討論最大值是否大于零,最后結(jié)合零點存在定理確定極值點個數(shù).
試題解析:解:(Ⅰ)由,得.
即在上恒成立.
設(shè)函數(shù), .
則.
∵,∴.
∴當時, .
∴在上單調(diào)遞減.
∴當時, .
∴,即的取值范圍是.
(Ⅱ), .
∴.
設(shè),則.
由,得.
當時, ;當時, .
∴在上單調(diào)遞增,在上單調(diào)遞減.
且, , .
據(jù)(Ⅰ),可知.
(ⅰ)當,即時, 即.
∴在上單調(diào)遞減.
∴當時, 在上不存在極值.
(ⅱ)當,即時,
則必定,使得,且.
當變化時, , , 的變化情況如下表:
- | 0 | + | 0 | - | |
- | 0 | + | 0 | - | |
↘ | 極小值 | ↗ | 極大值 | ↘ |
∴當時, 在上的極值為,且.
∵.
設(shè),其中, .
∵,∴在上單調(diào)遞增, ,當且僅當時取等號.
∵,∴.
∴當時, 在上的極值.
綜上所述:當時, 在上不存在極值;當時, 在上存在極值,且極值均為正.
注:也可由,得.令后再研究在上的極值問題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網(wǎng)成為了人們?nèi)粘I畹囊徊糠郑芏嘞M者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總?cè)藬?shù)、經(jīng)濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?并指出是正相關(guān)還是負相關(guān);
(2)①求出關(guān)于的回歸方程;
②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預(yù)測長沙市一個月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù),回歸直線方程,
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一某班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖因事故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:
(1)求分數(shù)在[50,60)的頻率及全班人數(shù);
(2)求分數(shù)在[80,90)的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(3)若規(guī)定:90分(包含90分)以上為優(yōu)秀,現(xiàn)從分數(shù)在80分(包含80分)以上的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中至少有一份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“2019年”是一個重要的時間節(jié)點——中華人民共和國成立70周年,和全面建成小康社會的 關(guān)鍵之年.70年披荊斬棘,70年砥礪奮進,70年風雨兼程,70年滄桑巨變,勤勞勇敢的中國 人用自己的雙手創(chuàng)造了一項項輝煌的成績,取得了舉世矚目的成就.趁此良機,李明在天貓網(wǎng)店銷售“新中國成立70周年紀念冊”,每本紀念冊進價4元,物流費、管理費共為元/本,預(yù)計當每本紀念冊的售價為元(時,月銷售量為千本.
(I)求月利潤(千元)與每本紀念冊的售價X的函數(shù)關(guān)系式,并注明定義域:
(II)當為何值時,月利潤最大?并求出最大月利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期、最小值、對稱軸、對稱中心;
(2)設(shè)的內(nèi)角的對邊分別為,且,若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com