【題目】已知點(diǎn)M(﹣3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)N在直線PQ上,且滿足 . (Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)N的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn) 做直線l與軌跡C交于A,B兩點(diǎn),若在x軸上存在一點(diǎn)E(x0 , 0),使得△AEB是以點(diǎn)E為直角頂點(diǎn)的直角三角形,求直線l的斜率k的取值范圍.
【答案】解:(I)設(shè)N(x,y),∵ ,∴P(0, ), ∴ =(3, ), =(x,﹣ ),
∴ =3x﹣ =0,即y2=4x.
∴點(diǎn)N的軌跡C的方程是y2=4x.
(II)直線l的方程為y=k(x+ )(k≠0),
聯(lián)立方程組 ,消元得ky2﹣4y+2k=0,
∴△=16﹣8k2>0,解得﹣ <k<0或0<k< .
設(shè)A(x1 , y1),B(x2 , y2),則y1+y2= ,y1y2=2,
∴|AB|= = ,
設(shè)AB的中點(diǎn)為F,∵x1+x2= = ﹣1,∴F( ﹣ , ),
∵x軸上存在一點(diǎn)E(x0 , 0),使得△AEB是以點(diǎn)E為直角頂點(diǎn)的直角三角形,
∴F到x軸的距離d≤|EF|= |AB|,
即 ≤ ,化簡(jiǎn)得k4+k2﹣2≤0,解得0<k2≤1.
又﹣ <k<0或0<k< .
∴直線l的斜率k的范圍是[﹣1,0)∪(0,1].
【解析】(I)設(shè)N(x,y),求出P點(diǎn)坐標(biāo),根據(jù) =0列方程化簡(jiǎn)即可;(II)聯(lián)立方程組消元,利用根與系數(shù)的關(guān)系和弦長(zhǎng)公式計(jì)算|AB|及AB的中點(diǎn)F的坐標(biāo),令F到x軸的距離d≤ |AB|,結(jié)合判別式△>0列不等式組解出k的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在直線上.
(Ⅰ)若圓C與y軸相切,求圓C的方程;
(Ⅱ)當(dāng)a=0時(shí),問(wèn)在y軸上是否存在兩點(diǎn)A,B,使得對(duì)于圓C上的任意一點(diǎn)P,都有,若有,試求出點(diǎn)A,B的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E過(guò)點(diǎn)A(2,3),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)F1,F2在x軸上,離心率,∠F1AF2的平分線所在直線為l.
(1)求橢圓E的方程;
(2)設(shè)l與x軸的交點(diǎn)為Q,求點(diǎn)Q的坐標(biāo)及直線l的方程;
(3)在橢圓E上是否存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)?若存在,請(qǐng)找出;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)= ﹣1. (Ⅰ)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(Ⅱ)若f(x)在[1,e]上的最小值為 ,求a的值;
(Ⅲ)當(dāng)a=0時(shí),若x≥1時(shí),恒有xf(x)≤λ[g(x)+x]成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)滿足 ,當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間(﹣1,1]上,方程f(x)﹣4ax﹣a=0有兩個(gè)不等的實(shí)根,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且離心率
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)是否存在過(guò)點(diǎn)的直線交橢圓與不同的兩點(diǎn),且滿足 (其中為坐標(biāo)原點(diǎn))。若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P在直線x+3y﹣2=0上,點(diǎn)Q在直線x+3y+6=0上,線段PQ的中點(diǎn)為M(x0 , y0),且y0<x0+2,則 的取值范圍是( )
A.[﹣ ,0)
B.(﹣ ,0)??
C.(﹣ ,+∞)
D.(﹣∞,﹣ )∪(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,∠ACB=90°,BB1=3,AC=BC=2,D,E分別為AB,BC的中點(diǎn),F(xiàn)為BB1上一點(diǎn),且 = .
(1)求證:平面CDF⊥平面A1C1E;
(2)求二面角C1﹣CD﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《孫子算經(jīng)》是我國(guó)古代的數(shù)學(xué)著作,其卷下中有類似如下的問(wèn)題:“今有方物一束,外周一匝有四十枚,問(wèn)積幾何?”如右圖是解決該問(wèn) 題的程序框圖,若設(shè)每層外周枚數(shù)為a,則輸出的結(jié)果為( )
A.81
B.74
C.121
D.169
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com