(12分)已知是定義在(0,+∞)上的增函數(shù),且滿足 , 
(1)求證:=1    (2) 求不等式的解集.

(1)見解析;(2){x/3<x<6}。

解析試題分析:(1)由題意得f(1)=f(1×1)=f(1)+f(1)=2f(1) ∴f(1)=0,進一步得到.
(2)不等式化為f(x)>f(x-3)+1
∵f(2)=1 
∴f(x)>f(x-3)+f(2)=f(2x-6)
∵f(x)是(0,+∞)上的增函數(shù)
解得{x/3<x<6}
(1)【證明】 由題意得f(1)=f(1×1)=f(1)+f(1)=2f(1) ∴f(1)=0 3分
 ∴            。。。6分
(2)【解】 不等式化為f(x)>f(x-3)+1
∵f(2)=1 
∴f(x)>f(x-3)+f(2)=f(2x-6)
∵f(x)是(0,+∞)上的增函數(shù)
解得{x/3<x<6}                  。。。。12分
考點:本題主要是考查抽象函數(shù)單調(diào)性的運用。
點評:解決該試題的關(guān)鍵是利用得到f(2)=1,進而變形得到不等式的解集。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),
(1)作出的圖像;
(2)求滿足的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題13分)已知函數(shù)。
(Ⅰ)若,試判斷并證明的單調(diào)性;
(Ⅱ)若函數(shù)上單調(diào),且存在使成立,求的取值范圍;
(Ⅲ)當(dāng)時,求函數(shù)的最大值的表達式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知函數(shù)的一系列對應(yīng)值如下表:

















(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,求在區(qū)間上的最大、最小值及對應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)設(shè)是定義在上的單調(diào)增函數(shù),滿足,
,
求(1)
(2)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本題12分)
已知函數(shù).
(1)求的定義域;
(2)在函數(shù)的圖象上是否存在不同的兩點,使得過這兩點的直線平行于x軸;
(3)當(dāng),b滿足什么條件時,上恒取正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的奇函數(shù),當(dāng)時,
(1)求上的解析式;
(2)判斷上的單調(diào)性,并給予證明;
(3)當(dāng)時,關(guān)于的方程有解,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)若定義域內(nèi)存在,使不等式成立,求實數(shù)的最小值;
(2)若函數(shù)在區(qū)間上恰有兩個不同的零點,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)設(shè)函數(shù)),
(Ⅰ)令,討論的單調(diào)性;
(Ⅱ)關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;
(Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè),,試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案