【題目】當(dāng)時(shí),函數(shù)的值域是_________.

【答案】[1,2]

【解析】:f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),

≤x≤,

≤x+

≤sin(x+)≤1,

函數(shù)f(x)的值域?yàn)?/span>[﹣1,2],

故答案為:[﹣1,2].

型】填空
結(jié)束】
15

【題目】若點(diǎn)O內(nèi),且滿足,設(shè)的面積, 的面積,則________.

【答案】

【解析】,可得:

延長OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,

如圖所示:

2+3+4=

,

即O是DEF的重心,

△DOE,△EOF,△DOF的面積相等,

不妨令它們的面積均為1,

AOB的面積為,BOC的面積為,AOC的面積為

故三角形AOB,BOC,AOC的面積之比依次為: =3:2:4,

.

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),
f(x)= ,
則關(guān)于x的函數(shù)F(x)=f(x)﹣a(0<a<1)的所有零點(diǎn)之和為( 。
A.1﹣2a
B.2a﹣1
C.1﹣2﹣a
D.2﹣a﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量問題,全民關(guān)注,有需求就有研究,某科研團(tuán)隊(duì)根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器﹣﹣﹣霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過測試得到霧炮降塵率的頻率分布直方圖:
若降塵率達(dá)到18%以上,則認(rèn)定霧炮除塵有效.

(1)根據(jù)以上數(shù)據(jù)估計(jì)霧炮除塵有效的概率;
(2)現(xiàn)把A市規(guī)劃成三個(gè)區(qū)域,每個(gè)區(qū)域投放3臺霧炮進(jìn)行除塵(霧炮之間工作互不影響),若在一個(gè)區(qū)域內(nèi)的3臺霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理,求后期投入費(fèi)用的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且、.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則二人“心有靈犀”的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在區(qū)間[﹣2,t](t>﹣2)上的函數(shù)f(x)=(x2﹣3x+3)ex(其中e為自然對數(shù)的底).
(1)當(dāng)t>1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)設(shè)m=f(﹣2),n=f(t),求證:m<n;
(3)設(shè)g(x)=f(x)+(x﹣2)ex , 當(dāng)x>1時(shí),試判斷方程g(x)=x的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知 ,sinB=cosAsinC,S△ABC=6,P為線段AB上的點(diǎn),且 ,則xy的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代算書《孫子算經(jīng)》中有一著名的問題“物不知數(shù)”如圖1,原題為:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?后來,南宋數(shù)學(xué)家秦九韶在其著作《數(shù)學(xué)九章》中對此類問題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術(shù)”,如圖2程序框圖的算法思路源于“大衍求一術(shù)”執(zhí)行該程序框圖,若輸入的a,b分別為20,17,則輸出的c=( )

A.1
B.6
C.7
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋子里裝有7個(gè)球,其中有紅球4個(gè),編號分別為1,2,3,4;白球3個(gè),編號分別為2,3,4.從袋子中任取4個(gè)球(假設(shè)取到任何一個(gè)球的可能性相同).
(Ⅰ)求取出的4個(gè)球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個(gè)球中,紅球編號的最大值設(shè)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案