已知α,β是不重合的平面,m,n是不重合的直線,下列命題正確的序號(hào)為
 

①m∥n,n∥α⇒m∥α; 
②m⊥α,m⊥β⇒α∥β;
③α∩β=n,m∥α,m∥β⇒m∥n;       
④α⊥β,m⊥α,n⊥β⇒m⊥n.
分析:根據(jù)線面平行的判定定理來(lái)判斷①是否正確;
根據(jù)垂直于同一直線的兩個(gè)平面平行來(lái)判斷②是否正確;
借助圖形,如圖過(guò)m作兩個(gè)相交平面,分別與α,β相交于直線a,b,可證a∥b,從而可證a∥n,進(jìn)而可證m∥n,由此判斷③是否正確;
取直線m、n的方向向量
m
n
,根據(jù)α⊥β,則
m
n
,可判斷④是否正確.
解答:解:對(duì)①,缺少條件m?α,∴①錯(cuò)誤;
對(duì)②,根據(jù)垂直于同一直線的兩個(gè)平面平行,∴②正確;
對(duì)③,如圖過(guò)m作兩個(gè)相交平面,分別與α,β相交于直線a,b,可證m∥a,m∥b,∴a∥b,
可證a∥β,α∩β=n,∴a∥n,∴m∥n,故③正確;
對(duì)④,∵m⊥α,n⊥β,α⊥β,∴
m
n
,∴m⊥n,故④正確.
故答案是②③④.
精英家教網(wǎng)
點(diǎn)評(píng):本題考查了線線,線面平行、垂直關(guān)系的判斷,熟練掌握線面平行、垂直的判定與性質(zhì)定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、已知m、n是不重合的直線,α、β是不重合的平面,有下列命題:
(1)若α∩β=n,m∥n,則m∥α,m∥β;
(2)若m⊥α,m⊥β,則α∥β;
(3)若m∥α,m⊥n,則n⊥α;
(4)若m⊥α,n?α,則m⊥n.
其中所有真命題的序號(hào)是
(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知m,n是不重合的直線,α,β是不重合的平面,給出下列命題;
①若m⊥α,m?β,則α⊥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③如果m?α,n?α,m,n是異面直線,則n與α相交;
④若α∩β=m.n∥m,且n?α,n?β,則n∥α,且n∥β
其中正確確命題的序號(hào)是
①④
(把正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m、n是不重合的直線,α、β是不重合的平面,給出下列四個(gè)命題
①若m⊥α,m⊥β,則α∥β
②若m?α,n?β,m∥n,則α∥β
③若m∥n,m⊥α,則n⊥α
④若m⊥α,m?β,則α⊥β
其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m、n是不重合的兩直線,α、β、γ是三個(gè)兩兩不重合的平面.給出下面四個(gè)命題:
①若m⊥α,m⊥β則α∥β;
②若γ⊥α,γ⊥β則α∥β;
③若m⊆α,n⊆β,m∥n則α∥β;
④若m、n是異面直線,m⊆α,m∥β,n⊆β,n∥α則α∥β,
其中是真命題的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•成都一模)已知l、m是不重合的直線,α、β、γ是兩兩不重合的平面,給出下列命題:①若m∥l,m⊥α,則l⊥α;②若m∥l,m∥α,則l∥α;③若α⊥β,l?α,則l⊥β;④若α∩γ=m,β∩γ=l,α∥β,則m∥l.其中真命題的序號(hào)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案