【題目】已知函數(shù) . (Ⅰ)若g(x)=f(x)﹣a為奇函數(shù),求a的值;
(Ⅱ)試判斷f(x)在(0,+∞)內(nèi)的單調(diào)性,并用定義證明.

【答案】解:(Ⅰ)∵ ∴g(x)=f(x)﹣a= ,
∵g(x)是奇函數(shù),
∴g(﹣x)=﹣g(x),即 ,
解之得a=1.
(Ⅱ)設(shè)0<x1<x2 , 則
=
∵0<x1<x2
∴x1﹣x2<0,x1x2>0,從而 ,
即f(x1)<f(x2).
所以函數(shù)f(x)在(0,+∞)內(nèi)是單調(diào)增函數(shù)
【解析】(I)根據(jù)f(x)表達(dá)式,得g(x)= ,再根據(jù)奇函數(shù)的定義采用比較系數(shù)法即可求出實(shí)數(shù)a的值.(II)設(shè)0<x1<x2 , 將f(x1)與f(x2)作差、因式分解,得f(x1)<f(x2),結(jié)合函數(shù)奇偶性的定義得到函數(shù)f(x)在(0,+∞)內(nèi)是單調(diào)增函數(shù).
【考點(diǎn)精析】通過(guò)靈活運(yùn)用奇偶性與單調(diào)性的綜合,掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相反的單調(diào)性即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓C1 +y2=1,x軸被曲線C2:y=x2﹣b截得的線段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng).

(1)求實(shí)數(shù)b的值;
(2)設(shè)C2與y軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線l與C2相交于點(diǎn)A、B,直線MA、MB分別與C1相交于D、E.
①證明: =0;
②記△MAB,△MDE的面積分別是S1 , S2 . 若 =λ,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,常數(shù)a>0.
(1)設(shè)mn>0,證明:函數(shù)f(x)在[m,n]上單調(diào)遞增;
(2)設(shè)0<m<n且f(x)的定義域和值域都是[m,n],求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,則異面直線A1C與B1C1所成的角為 . .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= +
(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)= [f2(x)﹣2]+f(x)(a為實(shí)數(shù)),求F(x)在a<0時(shí)的最大值g(a);
(3)對(duì)(2)中g(shù)(a),若﹣m2+2tm+ ≤g(a)對(duì)a<0所有的實(shí)數(shù)a及t∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)作出函數(shù)f(x)的圖象;
(2)直接寫(xiě)出函數(shù)f(x)的值域;
(3)求 f[f(﹣1)]的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(ax﹣1)( a>0,a≠1 )
(1)討論函數(shù)f(x)的定義域;
(2)當(dāng)a>1時(shí),解關(guān)于x的不等式:f(x)<f(1);
(3)當(dāng)a=2時(shí),不等式f(x)﹣log2(1+2x)>m對(duì)任意實(shí)數(shù)x∈[1,3]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知經(jīng)過(guò)點(diǎn)A(﹣4,0)的動(dòng)直線l與拋物線G:x2=2py(p>0)相交于B、C,當(dāng)直線l的斜率是 時(shí), . (Ⅰ)求拋物線G的方程;
(Ⅱ)設(shè)線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|(x+1).
(1)將f(x)寫(xiě)成分段函數(shù),并作出函數(shù)f(x)的圖象;
(2)根據(jù)函數(shù)的圖象寫(xiě)出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案