【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯在他的著作《圓錐曲線論》中記載了用平面切制圓錐得到圓錐曲線的方法.如圖,將兩個(gè)完全相同的圓錐對(duì)頂放置(兩圓錐的軸重合),已知兩個(gè)圓錐的底面半徑為1,母線長(zhǎng)均為,記過(guò)圓錐軸的平面ABCD為平面與兩個(gè)圓錐面的交線為ACBD),用平行于的平面截圓錐,該平面與兩個(gè)圓錐側(cè)面的截線即為雙曲線E的一部分,且雙曲線E的兩條漸近線分別平行于ACBD,則雙曲線E的離心率為(

A.B.C.D.2

【答案】B

【解析】

以矩形的中心為原點(diǎn),圓錐的軸為x軸建立平面直角坐標(biāo)系,由題,得,從而可得到本題答案.

以矩形的中心為原點(diǎn),圓錐的軸為x軸建立平面直角坐標(biāo)系,

設(shè)雙曲線的標(biāo)準(zhǔn)方程為,

由題,得,則,即

所以.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為4的正方形,中點(diǎn),邊上一動(dòng)點(diǎn),現(xiàn)將,分別沿,折起,使得,重合為點(diǎn),形成四棱錐,過(guò)點(diǎn)平面.①平面平面;②當(dāng)中點(diǎn)時(shí),三棱錐的體積為;③的垂心;④長(zhǎng)的取值范圍為 .則以上判斷正確的有______(填正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形ABCD中,∠A,2ABBC,E,F分別是BC,AD的中點(diǎn).將四邊形DCEF沿著EF折起,使得平面ABEF⊥平面DCEF,得到三棱柱AFDBEC.

1)證明:DBEF;

2)若AB2,求三棱柱AFDBEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問(wèn)答競(jìng)賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競(jìng)賽的十次成績(jī),將統(tǒng)計(jì)情況繪制成如圖所示的折線圖.根據(jù)該折線圖,下面結(jié)論正確的是(

A.甲、乙成績(jī)的中位數(shù)均為7

B.乙的成績(jī)的平均分為6.8

C.甲從第四次到第六次成績(jī)的下降速率要大于乙從第四次到第五次的下降速率

D.甲的成績(jī)的方差小于乙的成績(jī)的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬(wàn)件

B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過(guò)50%,在3月底最高

C. 從兩圖來(lái)看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致

D. 從1~4月來(lái)看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)討論單調(diào)性;

(Ⅱ)當(dāng)時(shí),設(shè)函數(shù)存在兩個(gè)零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)證明:函數(shù)fx)在(0,π)上是減函數(shù);

2)若, ,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為

1

2

3

4

5

P

0.4

0.2

0.2

0.1

0.1

商場(chǎng)經(jīng)銷一件該商品,采用1期付款,其利潤(rùn)為200元;分2期或3期付款,其利潤(rùn)為250元;分4期或5期付款,其利潤(rùn)為300元,X表示經(jīng)銷一件該商品的利潤(rùn).

1)求事件A購(gòu)買(mǎi)該商品的3位顧客中,至少有1位采用1期付款的概率;

2)求X的分布列及期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案