本小題滿分12分)設(shè)函數(shù)f(x)= ,其中
(1)求f(x)的單調(diào)區(qū)間;(2)討論f(x)的極值    
(Ⅰ)當(dāng)時(shí),上單調(diào)遞增;
當(dāng)時(shí),上單調(diào)遞增;在上單調(diào)遞減;在上單調(diào)遞增;
(Ⅱ)當(dāng)時(shí),函數(shù)沒有極值;
當(dāng)時(shí),函數(shù)處取得極大值,在處取得極小值.

試題分析: (1)先求解函數(shù)的導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)的正負(fù)解集,需要對(duì)參數(shù)a分類討論得到單調(diào)區(qū)間。
(2)在第一問的基礎(chǔ)上,利用函數(shù)的單調(diào)性確定極值問題。
解:由已知得,令,解得 。。。。。。。2分
(Ⅰ)當(dāng)時(shí),,上單調(diào)遞增;。。。。。。。。。。。4分
當(dāng)時(shí),上單調(diào)遞增;在上單調(diào)遞減;在上單調(diào)遞增;.。。。6
(Ⅱ)由(Ⅰ)知,當(dāng)時(shí),函數(shù)沒有極值;.。。。。。。。。。。。。。。。。。9分
當(dāng)時(shí),函數(shù)處取得極大值,在處取得極小值.。。。。。。。。12分
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用導(dǎo)數(shù)來(lái)判定函數(shù)的單調(diào)性以及函數(shù)的極值問題,也是高考中常見的重要的題型,要給予關(guān)注。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),曲線過點(diǎn),且在點(diǎn)處的切線斜率為2.
(Ⅰ)求的值;
(Ⅱ)求的極值點(diǎn);
(Ⅲ)對(duì)定義域內(nèi)任意一個(gè),不等式是否恒成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分) 已知函數(shù),函數(shù)
(I)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(II)若,且函數(shù)上的最小值是2 ,求的值;
(III)對(duì)于(II)中所求的a值,若函數(shù),恰有三個(gè)零點(diǎn),求b的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
設(shè)點(diǎn)P在曲線上,從原點(diǎn)向A(2,4)移動(dòng),如果直線OP,曲線及直線x=2所圍成的面積分別記為、。

(Ⅰ)當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)有最小值時(shí),求點(diǎn)P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)于都有成立,試求的取值范圍;
(3)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù) ,其中r為有理數(shù),且0<r<1. 則的最小值為_______;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)在區(qū)間上的最小值是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)(-1,-3)處的切線方程是           

查看答案和解析>>

同步練習(xí)冊(cè)答案