已知集合A={x|x<a},B={x|log3x<1},A∪(∁RB)=R,則實數(shù)a的取值范圍是( 。
A、a>3B、a≥3
C、a≤3D、a<3
考點:交、并、補集的混合運算
專題:集合
分析:求出B中不等式的解集確定出B,根據全集R求出B的補集,由A與B補集的并集為全集,確定出a的范圍即可.
解答: 解:由B中不等式變形得:log3x<1=log33,得到0<x<3,即B=(0,3),
∴∁RB=(-∞,0]∪[3,+∞),
∵A=(-∞,a),A∪(∁RB)=R,
∴a≥3.
故選:B.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經過點P(-4a,3a),(a≠0)則2sinα+cosα=(  )
A、-0.4B、0.4
C、0D、±0.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在整數(shù)集Z中,被4除所得余數(shù)k的所有整數(shù)組成一個“類”,記為[k],即[k]={4n+k|n∈Z},k=0,1,2,3.給出如下四個結論:①2012∈[1];②-2∈[2];③Z=[0]∪[2]∪[3];④“整數(shù)a,b屬于同一‘類’”的充要條件是“a-b∈[0]”.其中正確的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱柱ABC-A1B1C1中,側棱垂直于底面,AB=BC=CA=
3
,AA1=2
2
,則該三棱柱外接球的體積等于( 。
A、2
3
π
B、6π
C、4
3
π
D、12π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=
x+π,(x≥0)
1,(x<0)
,則f[f(-1)]的值為( 。
A、0B、1C、π+1D、π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
m
,
n
是單位向量且
m
=(x,y-b),
n
=(x-a,y),則acosα+bsinα(α∈R)的最大值為( 。
A、
5
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,直線A1B和平面A1B1CD所成的角為( 。
A、30°B、45°
C、60°D、15°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},若點(n,an)(n∈N*)均在直線y-2=k(x-6)上,則{an}的前11項和S11等于( 。
A、18B、20C、22D、24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩人進行兵乓球比賽,在每一局的比賽中,甲獲勝的概率為p(0<p<1).
(1)如果甲,乙兩人共比賽4局,甲恰好負2局的概率不大于其恰好勝3局的概率,試求p的取值范圍.
(2)若p=
1
3
,當采用3局2勝制的比賽規(guī)則時,求甲獲勝的概率.

查看答案和解析>>

同步練習冊答案