【題目】甲、乙、丙3人均以游戲的方式?jīng)Q定是否參加學校音樂社團、美術(shù)社團,游戲規(guī)則為:

①先將一個圓8等分(如圖),再將8個等分點,分別標注在8個相同的小球上,并將這8個小球放入一個不透明的盒子里,每個人從盒內(nèi)隨機摸出兩個小球、然后用摸出的兩個小球上標注的分點與圓心構(gòu)造三角形.若能構(gòu)成直角三角形,則兩個社團都參加;若能構(gòu)成銳角三角形,則只參加美術(shù)社團;若能構(gòu)成鈍角三角形,則只參加音樂社團;若不能構(gòu)成三角形,則兩個社團都不參加.

②前一個同學摸出兩個小球記錄下結(jié)果后,把兩個小球都放回盒內(nèi),下一位同學再從盒中隨機摸取兩個小球。

(1)求甲能參加音樂社團的概率;

(2)記甲、乙、丙3人能參加音樂社團的人數(shù)為隨機變量,求的分布列、數(shù)學期望和方差

【答案】(1) ;(2)分布列見解析; 數(shù)學期望;方差

【解析】

1)先求得基本事件的總數(shù)為,然后計算出與圓心構(gòu)成直角三角形或鈍角三角形的取法數(shù)之和,再利用古典概型概率計算公式,求得所求概率.(2)利用二項分布概率計算公式,計算出分布列,并求得數(shù)學期望和方差.

解:(1)從盒中隨機摸出兩個小球,即是從8個等分點中隨機選取兩個不同的分點,共有種,其中與圓心構(gòu)成直角三角形的取法有8種:,與圓心構(gòu)成鈍角三角形的取法有種: .所以甲能參加音樂社團的概率為:.

(2)由題意可知:,的可能取值為:0,1,2,3.

所以的分布列為:

0

1

2

3

數(shù)學期望

方差

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點在以為直徑的圓上,垂直與圓所在平面,的垂心.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)(0, 2π)內(nèi)有兩個不同零點、。

(1)求實數(shù)的取值范圍;

(2)的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)雙曲線的左、右焦點分別為. 若點P在雙曲線上,且為銳角三角形,則|PF1|+|PF2|的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表為2015年至2018年某百貨零售企業(yè)的年銷售額(單位:萬元)與年份代碼的對應(yīng)關(guān)系,其中年份代碼年份-2014(如:代表年份為2015年)。

年份代碼

1

2

3

4

年銷售額

105

155

240

300

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測2019年該百貨零售企業(yè)的年銷售額;

(2)2019年,美國為遏制我國的發(fā)展,又祭出“長臂管轄”的霸權(quán)行徑,單方面發(fā)起對我國的貿(mào)易戰(zhàn),有不少人對我國經(jīng)濟發(fā)展前景表示擔憂.此背景下,某調(diào)查平臺為了解顧客對該百貨零售企業(yè)的銷售額能否持續(xù)增長的看法,隨機調(diào)查了60為男顧客、50位女顧客,得到如下列聯(lián)表:

持樂觀態(tài)度

持不樂觀態(tài)度

總計

男顧客

45

15

60

女顧客

30

20

50

總計

75

35

110

問:能否在犯錯誤的概率不超過0.05的前提下認為對該百貨零售企業(yè)的年銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):回歸直線方程,

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設(shè)曲線交于點,曲線軸交于點,求線段的中點到點的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若當時,恒成立,求實數(shù)的取值范圍.

(2)設(shè),求證:當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量用其質(zhì)量指標值來衡量)質(zhì)量指標值越大表明質(zhì)量越好,且質(zhì)量指標值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為配方和配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標值,得到下面試驗結(jié)果:

配方的頻數(shù)分布表:

指標值分組

[90,94

[94,98

[98,102

[102,106

[106,110]

頻數(shù)

8

20

42

22

8

配方的頻數(shù)分布表:

指標值分組

[90,94

[94,98

[98,102

[102,106]

[106,110]

頻數(shù)

4

12

42

32

10

1)分別估計用配方、配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;

2)已知用配方生產(chǎn)的一件產(chǎn)品的利潤(單位:元)與其質(zhì)量指標值的關(guān)系為,估計用配方生產(chǎn)的一件產(chǎn)品的利潤大于的概率,并求用配方生產(chǎn)的上述件產(chǎn)品的平均利潤.

查看答案和解析>>

同步練習冊答案