已知以橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F為圓心,a為半徑的圓與直線l:x=
a2
c
(其中c=
a2-b2
)交于不同的兩點,則該橢圓的離心率的取值范圍是( 。
A、(
5
-1
2
,1)
B、(
3
-1
2
,1)
C、(0,
3
-1
2
)
D、(0,
5
-1
2
)
分析:根據(jù)a為半徑的圓與橢圓的右準(zhǔn)線交于不同的兩點可知a大于焦準(zhǔn)距即
a2
-c
<a,不等式兩邊同時除以a,可得
1
e
-e<1進而可得e的范圍.又根據(jù)e<1,綜合得e的范圍.
解答:解:∵a為半徑的圓與橢圓的右準(zhǔn)線交于不同的兩點
a2
-c
<a,
a
c
-
c
a
<1
,即
1
e
-e<1
解得e>
5
-1
2

又因e<1,
5
-1
2
<e<1
故選A
點評:本題主要考查橢圓的性質(zhì).屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某隧道設(shè)計為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個橢圓.
精英家教網(wǎng)
(1)若最大拱高h(yuǎn)為6m,則隧道設(shè)計的拱寬l是多少?
(2)若要使隧道上方半橢圓部分的土方工程量最小,則應(yīng)如何設(shè)計拱高h(yuǎn)和拱寬l?
(已知:橢圓
x2
a2
+
y2
b2
=1的面積公式為S=πab,柱體體積為底面積乘以高.)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個點M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點為支點,用合金鋼板把隧道拱線部分連接封閉,形成一個梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價是梯形頂部單位面積鋼板造價的
2
倍,試確定M、N的位置以及h的值,使總造價最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:橢圓
x2
a2
+
y2
b2
=1
(a>b>0),過點A(-a,0),B(0,b)的直線傾斜角為
π
6
,原點到該直線的距離為
3
2

(1)求橢圓的方程;
(2)斜率大于零的直線過D(-1,0)與橢圓交于E,F(xiàn)兩點,若
ED
=2
DF
,求直線EF的方程;
(3)是否存在實數(shù)k,直線y=kx+2交橢圓于P,Q兩點,以PQ為直徑的圓過點D(-1,0)?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•虹口區(qū)一模)已知:橢圓C1
x2
4
+
y2
b2
=1(0<b<2)
和雙曲線C2
x2
a2
-
y2
4
=1
.過橢圓C1的右焦點F2作與橢圓長軸垂直的直線與橢圓相交于P,Q兩點,|PQ|=3.
(1)求橢圓C1的方程;
(2)若以橢圓右頂點A為圓心,|AF2|為半徑的圓與雙曲線C2的漸近線相切,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:衢州模擬 題型:單選題

已知以橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F為圓心,a為半徑的圓與直線l:x=
a2
c
(其中c=
a2-b2
)交于不同的兩點,則該橢圓的離心率的取值范圍是(  )
A.(
5
-1
2
,1)
B.(
3
-1
2
,1)
C.(0,
3
-1
2
)
D.(0,
5
-1
2
)

查看答案和解析>>

同步練習(xí)冊答案